4,481 research outputs found

    Stable Isotropic Cosmological Singularities in Quadratic Gravity

    Get PDF
    We show that, in quadratic lagrangian theories of gravity, isotropic cosmological singularities are stable to the presence of small scalar, vector and tensor inhomogeneities. Unlike in general relativity, a particular exact isotropic solution is shown to be the stable attractor on approach to the initial cosmological singularity. This solution is also known to act as an attractor in Bianchi universes of types I, II and IX, and the results of this paper reinforce the hypothesis that small inhomogeneous and anisotropic perturbations of this attractor form part of the general cosmological solution to the field equations of quadratic gravity. Implications for the existence of a 'gravitational entropy' are also discussed.Comment: 18 pages, no figure

    Cosmological Bounds on Spatial Variations of Physical Constants

    Full text link
    We derive strong observational limits on any possible large-scale spatial variation in the values of physical 'constants' whose space-time evolution is driven by a scalar field. The limits are imposed by the isotropy of the microwave background on large angular scales in theories which describe space and time variations in the fine structure constant, the electron-proton mass ratio, and the Newtonian gravitational constant, G. Large-scale spatial fluctuations in the fine structure constant are bounded by 2x10^-9 and 1.2x10^-8 in the BSBM and VSL theories respectively, fluctuations in the electron-proton mass ratio by 9x10^-5 in the BM theory and fluctuations in G by 3.6x10^-10 in Brans-Dicke theory. These derived bounds are significantly stronger than any obtainable by direct observations of astrophysical objects at the present time.Comment: 13 pages, 1 table, typos corrected, refs added. Published versio

    Cosmological Co-evolution of Yang-Mills Fields and Perfect Fluids

    Full text link
    We study the co-evolution of Yang-Mills fields and perfect fluids in Bianchi type I universes. We investigate numerically the evolution of the universe and the Yang-Mills fields during the radiation and dust eras of a universe that is almost isotropic. The Yang-Mills field undergoes small amplitude chaotic oscillations, which are also displayed by the expansion scale factors of the universe. The results of the numerical simulations are interpreted analytically and compared with past studies of the cosmological evolution of magnetic fields in radiation and dust universes. We find that, whereas magnetic universes are strongly constrained by the microwave background anisotropy, Yang-Mills universes are principally constrained by primordial nucleosynthesis and the bound is comparatively weak, and Omega_YM < 0.105 Omega_rad.Comment: 13 pages, 5 figures, submitted to PR

    Thermal-fatigue and oxidation resistance of cobalt-modified Udimet 700 alloy

    Get PDF
    Comparative thermal-fatigue and oxidation resistances of cobalt-modified wrought Udimet 700 alloy (obtained by reducing the cobalt level by direct substitution of nickel) were determined from fluidized-bed tests. Bed temperatures were 1010 and 288 C (1850 and 550 C) for the first 5500 symmetrical 6-min cycles. From cycle 5501 to the 14000-cycle limit of testing, the heating bed temperature was increased to 1050 C (1922 F). Cobalt levels between 0 and 17 wt% were studied in both the bare and NiCrAlY overlay coated conditions. A cobalt level of about 8 wt% gave the best thermal-fatigue life. The conventional alloy specification is for 18.5% cobalt, and hence, a factor of 2 in savings of cobalt could be achieved by using the modified alloy. After 13500 cycles, all bare cobalt-modified alloys lost 10 to 13 percent of their initial weight. Application of the NiCrAlY overlay coating resulted in weight losses of 1/20 to 1/100 of that of the corresponding bare alloy

    Cosmological Constraints on a Dynamical Electron Mass

    Full text link
    Motivated by recent astrophysical observations of quasar absorption systems, we formulate a simple theory where the electron to proton mass ratio μ=me/mp\mu =m_{e}/m_{p} is allowed to vary in space-time. In such a minimal theory only the electron mass varies, with α\alpha and mpm_{p} kept constant. We find that changes in μ\mu will be driven by the electronic energy density after the electron mass threshold is crossed. Particle production in this scenario is negligible. The cosmological constraints imposed by recent astronomical observations are very weak, due to the low mass density in electrons. Unlike in similar theories for spacetime variation of the fine structure constant, the observational constraints on variations in μ\mu imposed by the weak equivalence principle are much more stringent constraints than those from quasar spectra. Any time-variation in the electron-proton mass ratio must be less than one part in 10910^{9}since redshifts z≈1.z\approx 1.This is more than one thousand times smaller than current spectroscopic sensitivities can achieve. Astronomically observable variations in the electron-proton must therefore arise directly from effects induced by varying fine structure 'constant' or by processes associated with internal proton structure. We also place a new upper bound of 2×10−82\times 10^{-8} on any large-scale spatial variation of μ\mu that is compatible with the isotropy of the microwave background radiation.Comment: New bounds from weak equivalence principle experiments added, conclusions modifie

    The Stability of an Isotropic Cosmological Singularity in Higher-Order Gravity

    Full text link
    We study the stability of the isotropic vacuum Friedmann universe in gravity theories with higher-order curvature terms of the form (RabRab)n(R_{ab}R^{ab})^{n} added to the Einstein-Hilbert Lagrangian of general relativity on approach to an initial cosmological singularity. Earlier, we had shown that, when % n=1, a special isotropic vacuum solution exists which behaves like the radiation-dominated Friedmann universe and is stable to anisotropic and small inhomogeneous perturbations of scalar, vector and tensor type. This is completely different to the situation that holds in general relativity, where an isotropic initial cosmological singularity is unstable in vacuum and under a wide range of non-vacuum conditions. We show that when n≠1n\neq 1, although a special isotropic vacuum solution found by Clifton and Barrow always exists, it is no longer stable when the initial singularity is approached. We find the particular stability conditions under the influence of tensor, vector, and scalar perturbations for general nn for both solution branches. On approach to the initial singularity, the isotropic vacuum solution with scale factor a(t)=tP−/3a(t)=t^{P_{-}/3} is found to be stable to tensor perturbations for 0.5<n<1.13090.5<n< 1.1309 and stable to vector perturbations for 0.861425<n≤10.861425 < n \leq 1, but is unstable as t→0t \to 0 otherwise. The solution with scale factor a(t)=tP+/3a(t)=t^{P_{+}/3} is not relevant to the case of an initial singularity for n>1n>1 and is unstable as t→0t \to 0 for all nn for each type of perturbation.Comment: 25 page
    • …
    corecore