36 research outputs found

    Truncated Amyloid-beta((11-40/42)) from Alzheimer Disease Binds Cu2+ with a Femtomolar Affinity and Influences Fiber Assembly

    Get PDF

    N-Terminally Truncated Amyloid-beta((11-40/42)) Cofibrillizes with its Full-Length Counterpart: Implications for Alzheimer's Disease

    Get PDF
    Biotechnology and Biological Sciences Research Council. Grant Number: BB/M023877/

    Structural and functional insights into the mechanism of action of plant boron transporters

    No full text
    Boron has essential roles in plant growth and development. BOR proteins are key in the active uptake and distribution of boron, and regulation of intracellular boron concentrations. However, their mechanism of action remains poorly studied. BOR proteins are members of the SLC4 family of transporters and thus homologues of well studied mammalian transporters including the human Anion Exchanger 1 (hAE1). Here we generated Arabidopsis thaliana BOR1 (AtBOR1) variants based i) on known disease causing mutations of hAE1 (S466R, A500R) and ii) a loss of function mutation (D311A) identified in the yeast BOR protein, ScBOR1p. The AtBOR1 variants express in yeast and localise to the plasma membrane, although both S466R and A500R exhibit lower expression than the WT AtBOR1 and D311A. The D311A, S466R and A500R mutations result in a loss of boron efflux activity in a yeast bor1p knockout strain. A. thaliana plants containing these three individual mutations exhibit substantially decreased growth phenotypes in soil under conditions of low boron. These data confirm an important role for D311 in the function of the protein and show that mutations equivalent to disease causing mutations in hAE1 have major effects in AtBOR1. We also obtained a low resolution cryo-EM structure of a BOR protein from Oryza sativa, OsBOR3 lacking the 30 C-terminal amino acids. This structure confirms the gate and core domain organisation previously observed for related proteins, and is strongly suggestive of an inward facing conformation

    The generation of live offspring from vitrified oocytes

    Get PDF
    Oocyte cryopreservation is extremely beneficial for assisted reproductive technologies, the treatment of infertility and biotechnology and offers a viable alternative to embryo freezing and ovarian grafting approaches for the generation of embryonic stem cells and live offspring. It also offers the potential to store oocytes to rescue endangered species by somatic cell nuclear transfer and for the generation of embryonic stem cells to study development in these species. We vitrified mouse oocytes using a range of concentrations of trehalose (0 to 0.3 M) and demonstrated that 0.1 and 0.3 M trehalose had similar developmental rates, which were significantly different to the 0.2 M cohort (P < 0.05). As mitochondria are important for fertilisation outcome, we observed that the clustering and distribution of mitochondria of the 0.2 M cohort were more affected by vitifrication than the other groups. Nevertheless, all 3 cohorts were able to develop to blastocyst, following in vitro fertilisation, although developmental rates were better for the 0.1 and 0.3 M cohorts than the 0.2 M cohort (P < 0.05). Whilst blastocysts gave rise to embryonic stem-like cells, it was apparent from immunocytochemistry and RT-PCR that these cells did not demonstrate true pluripotency and exhibited abnormal karyotypes. However, they gave rise to teratomas following injection into SCID mice and differentiated into cells of each of the germinal layers following in vitro differentiation. The transfer of 2-cell embryos from the 0.1 and 0.3 M cohorts resulted in the birth of live offspring that had normal karyotypes (9/10). When 2-cell embryos from vitrified oocytes underwent vitrification, and were thawed and transferred, live offspring were obtained that exhibited normal karyotypes, with the exception of one offspring who was larger and died at 7 months. We conclude that these studies highlight the importance of the endometrial environment for the maintenance of genetic stability and thus the propagation of specific genetic traits
    corecore