7 research outputs found

    Are Strength Indicators and Skin Temperature Affected by the Type of Warm-Up in Paralympic Powerlifting Athletes?

    Get PDF
    (1) Background: the present study aimed to evaluate the effect of different types of warm-ups on the strength and skin temperature of Paralympic powerlifting athletes. (2) Methods: the participants were 15 male Paralympic powerlifting athletes. The effects of three different types of warm-up (without warm-up (WW), traditional warm-up (TW), or stretching warm-up (SW)) were analyzed on static and dynamic strength tests as well as in the skin temperature, which was monitored by thermal imaging. (3) Results: no differences in the dynamic and static indicators of the force were shown in relation to the different types of warm-ups. No significant differences were found in relation to peak torque (p = 0.055, F = 4.560, η2p = 0.246 medium effect), and one-repetition maximum (p = 0.139, F = 3.191, η2p = 0.186, medium effect) between the different types of warm-ups. In the thermographic analysis, there was a significant difference only in the pectoral muscle clavicular portion between the TW (33.04 ± 0.71 °C) and the WW (32.51 ± 0.74 °C) (p = 0.038). The TW method also presented slightly higher values than the SW and WW in the pectoral muscles sternal portion and the deltoid anterior portion, but with p-value > 0.05. (4) Conclusions: the types of warm-ups studied do not seem to interfere with the performance of Paralympic Powerlifting athletes. However, the thermal images showed that traditional warm-up best meets the objectives expected for this preparation phase.post-print1305 K

    The Influence of Warm-Up on Body Temperature and Strength Performance in Brazilian National-Level Paralympic Powerlifting Athletes

    No full text
    Background and Objectives: The effects of warm-up in athletic success have gained strong attention in recent studies. There is, however, a wide gap in awareness of the warm-up process to be followed, especially in Paralympic powerlifting (PP) athletes. This study aimed to analyze different types of warm-up on the physical performance of PP athletes. Materials and Methods: The sample consisted of 12 elite Brazilian PP male athletes (age, 24.14 ± 6.21 years; bodyweight, 81.67 ± 17.36 kg). The athletes performed maximum isometric force (MIF), rate of force development (RFD), and speed test (Vmax) in three different methods of warm-up. Tympanic temperature was used to estimate the central body temperature. Results: A significant difference was observed for MIF in the without warm-up (WW) condition in relation to the traditional warm-up (TW) and stretching warm-up (SW) (p = 0.005, η2p = 0.454, high effect). On the contrary, no significant differences were observed in RFD, fatigue index (FI) and time in the different types of warm up (p > 0.05). Furthermore, no significant differences were observed in relation to the maximum repetition (p = 0.121, η2p = 0.275, medium effect) or the maximum speed (p = 0.712, η2p = 0.033, low effect) between the different types of warm up. In relation to temperature, significant differences were found for the TW in relation to the “before” and “after” conditions. In addition, differences were found between WW in the “after” condition and SW. In addition, WW demonstrated a significant difference in relation to TW in the “10 min later” condition (F = 26.87, p = 0.05, η2p = 0.710, high effect). Conclusions: The different types of warm-up methods did not seem to provide significant differences in the force indicators in elite PP athletes

    Organizational factors associated with adherence to low tidal volume ventilation: a secondary analysis of the CHECKLIST-ICU database

    No full text
    Background: Survival benefit from low tidal volume (VT) ventilation (LTVV) has been demonstrated for patients with acute respiratory distress syndrome (ARDS), and patients not having ARDS could also benefit from this strategy. Organizational factors may play a role on adherence to LTVV. The present study aimed to identify organizational factors with an independent association with adherence to LTVV. Methods: Secondary analysis of the database of a multicenter two-phase study (prospective cohort followed by a cluster-randomized trial) performed in 118 Brazilian intensive care units. Patients under mechanical ventilation at day 2 were included. LTVV was defined as a VT ≤ 8 ml/kg PBW on the second day of ventilation. Data on the type and number of beds of the hospital, teaching status, nursing, respiratory therapists and physician staffing, use of structured checklist, and presence of protocols were tested. A multivariable mixed-effect model was used to assess the association between organizational factors and adherence to LTVV. Results: The study included 5719 patients; 3340 (58%) patients received LTVV. A greater number of hospital beds (absolute difference 7.43% [95% confidence interval 0.61–14.24%]; p = 0.038), use of structured checklist during multidisciplinary rounds (5.10% [0.55–9.81%]; p = 0.030), and presence of at least one nurse per 10 patients during all shifts (17.24% [0.85–33.60%]; p = 0.045) were the only three factors that had an independent association with adherence to LTVV. Conclusions: Number of hospital beds, use of a structured checklist during multidisciplinary rounds, and nurse staffing are organizational factors associated with adherence to LTVV. These findings shed light on organizational factors that may improve ventilation in critically ill patients
    corecore