58 research outputs found

    Chromosomally-Encoded Yersinia pestis Type III Secretion Effector Proteins Promote Infection in Cells and in Mice

    Get PDF
    Yersinia pestis, the causative agent of plague, possesses a number of virulence mechanisms that allows it to survive and proliferate during its interaction with the host. To discover additional infection-specific Y. pestis factors, a transposon site hybridization (TraSH)-based genome-wide screen was employed to identify genomic regions required for its survival during cellular infection. In addition to several well-characterized infection-specific genes, this screen identified three chromosomal genes (y3397, y3399, and y3400), located in an apparent operon, that promoted successful infection. Each of these genes is predicted to encode a leucine-rich repeat family protein with or without an associated ubiquitin E3 ligase domain. These genes were designated Yersinia leucine-rich repeat gene A (ylrA), B (ylrB), and C (ylrC). Engineered strains with deletions of y3397 (ylrC), y3399 (ylrB), or y3400 (ylrA), exhibited infection defects both in cultured cells and in the mouse. C-terminal FLAG-tagged YlrA, YlrB, and YlrC were secreted by Y. pestis in the absence but not the presence of extracellular calcium and deletions of the DNA sequences encoding the predicted N-terminal type III secretion signals of YlrA, YlrB, and YlrC prevented their secretion, indicating that these proteins are substrates of the type III secretion system (T3SS). Further strengthening the connection with the T3SS, YlrB was readily translocated into HeLa cells and expression of the YlrA and YlrC proteins in yeast inhibited yeast growth, indicating that these proteins may function as anti-host T3S effector proteins

    BET Bromodomain Inhibitors Which Permit Treg Function Enable a Combinatorial Strategy to Suppress GVHD in Pre-clinical Allogeneic HSCT

    Get PDF
    A recent approach for limiting production of pro-inflammatory cytokines has been to target bromodomain and extra-terminal (BET) proteins. These epigenetic readers of histone acetylation regulate transcription of genes involved in inflammation, cardiovascular disease, and cancer. Development of BET inhibitors (BETi) has generated enormous interest for their therapeutic potential. Because inflammatory signals and donor T cells promote graft-versus-host disease (GVHD), regulating both pathways could be effective to abrogate this disorder. The objective of the present study was to identify a BETi which did not interfere in vivo with CD4+FoxP3+ regulatory T cell (Treg) expansion and function to utilize together with Tregs following allogeneic hematopoietic stem cell transplantation (aHSCT) to ameliorate GVHD. We have reported that Tregs can be markedly expanded and selectively activated with increased functional capacity by targeting TNFRSF25 and CD25 with TL1A-Ig and low dose IL-2, respectively. Here, mice were treated over 7 days (TL1A-Ig + IL-2) together with BETi. We found that the BETi EP11313 did not decrease frequency/numbers or phenotype of expanded Tregs as well as effector molecules, such as IL-10 and TGF-β. However, BETi JQ1 interfered with Treg expansion and altered subset distribution and phenotype. Notably, in Treg expanded mice, EP11313 diminished tnfa and ifng but not il-2 RNA levels. Remarkably, Treg pSTAT5 expression was not affected by EP11313 supporting the notion that Treg IL-2 signaling remained intact. MHC-mismatched aHSCT (B6 → BALB/c) was performed using in vivo expanded donor Tregs with or without EP11313 short-term treatment in the recipient. Early post-transplant, improvement in the splenic and LN CD4/CD8 ratio along with fewer effector cells and high Treg levels in aHSCT recipients treated with expanded Tregs + EP11313 was detected. Interestingly, this group exhibited a significant diminution of GVHD clinical score with less skin and ocular involvement. Finally, using low numbers of highly purified expanded Tregs, improved clinical GVHD scores were observed in EP11313 treated recipients. In total, we conclude that use of this novel combinatorial strategy can suppress pre-clinical GVHD and posit, in vivo EP11313 treatment might be useful combined with Treg expansion therapy for treatment of diseases involving inflammatory responses

    Recipient Tregs: Can They Be Exploited for Successful Hematopoietic Stem Cell Transplant Outcomes?

    No full text
    Human and mouse CD4(+)FoxP3(+) T cells (Tregs) comprise non-redundant regulatory compartments which maintain self-tolerance and have been found to be of potential therapeutic usefulness in autoimmune disorders and transplants including allogeneic hematopoietic stem cell transplantation (allo-HSCT). There is substantial literature interrogating the application of donor derived Tregs for the prevention of graft versus host disease (GVHD). This Mini-Review will focus on the recipient's Tregs which persist post-transplant. Although treatment in patients with low dose IL-2 months post-HSCT are encouraging, manipulating Tregs in recipients early post-transplant is challenging, in part likely an indirect consequence of damage to the microenvironment required to support Treg expansion of which little is understood. This review will discuss the potential for manipulating recipient Tregs in vivo prior to and after HSCT (fusion proteins, mAbs). Strategies that would circumvent donor/recipient peripheral blood harvest, cell culture and ex-vivo Treg expansion will be considered for the translational application of Tregs to improve HSCT outcomes
    corecore