7,914 research outputs found

    Pomerons and Jet Events at HERA

    Get PDF
    We study two and three jet events with a large rapidity gap at HERA. Unlike in the Ingelman-Schlein approach we do not adscribe a structure to the Pomeron. Instead, the coupling of the Pomeron to quarks or gluons is taken pointlike, which makes the model easy to test: the only degrees of freedom are the coupling constants of the Pomeron to the quarks or the gluons and a cutoff procedure to keep the Pomeron-gluon coupling well behaved.Comment: Latex fil

    NLO predictions for the growth of F2F_2 at small xx and comparison with experimental data

    Get PDF
    We present parametrizations for the proton structure function F2F_2 in the next to leading order in perturbative QCD. The calculations show that the dominant term to F2(x,Q2)F_2(x,Q^2) should grow as x^{-\ls} for small xx values, with the exponent \ls being essentially independent of Q2Q^2. Comparisons with the most recent H1 and ZEUS data confirm the value \ls \sim 0.35 obtained previously from fits to low energy data.Comment: 18 page

    Stabilizing the Dilaton in Superstring Cosmology

    Get PDF
    We address the important issue of stabilizing the dilaton in the context of superstring cosmology. Scalar potentials which arise out of gaugino condensates in string models are generally exponential in nature. In a cosmological setting this allows for the existence of quasi scaling solutions, in which the energy density of the scalar field can, for a period, become a fixed fraction of the background density, due to the friction of the background expansion. Eventually the field can be trapped in the minimum of its potential as it leaves the scaling regime. We investigate this possibility in various gaugino condensation models and show that stable solutions for the dilaton are far more common than one would have naively thought.Comment: 13 pages, LaTex, uses psfig.sty with 3 figure

    Moduli Evolution in Heterotic Scenarios

    Get PDF
    We discuss several aspects of the cosmological evolution of moduli fields in heterotic string/M-theory scenarios. In particular we study the equations of motion of both the dilaton and overall modulus of these theories in the presence of an expanding Universe and under different assumptions. First we analyse the impact of their couplings to matter fields, which turns out to be negligible in the string and M-theory scenarios. Then we examine in detail the possibility of scaling in M-theory, i.e. how the moduli would evolve naturally to their minima instead of rolling past them in the presence of a dominating background. In this case we find interesting and positive results, and we compare them to the analogous situation in the heterotic string.Comment: 12 pages, 4 postscript figure

    Geometrical estimators as a test of Gaussianity in the CMB

    Get PDF
    We investigate the power of geometrical estimators on detecting non-Gaussianity in the cosmic microwave background. In particular the number, eccentricity and Gaussian curvature of excursion sets above (and below) a threshold are studied. We compare their different performance when applied to non-Gaussian simulated maps of small patches of the sky, which take into account the angular resolution and instrumental noise of the Planck satellite. These non-Gaussian simulations are obtained as perturbations of a Gaussian field in two different ways which introduce a small level of skewness or kurtosis in the distribution. A comparison with a classical estimator, the genus, is also shown. We find that the Gaussian curvature is the best of our estimators in all the considered cases. Therefore we propose the use of this quantity as a particularly useful test to look for non-Gaussianity in the CMB.Comment: 9 pages, 6 postscript figures, submitted to MNRA
    • …
    corecore