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Abstract

We discuss several aspects of the cosmological evolution of moduli fields in het-
erotic string/M-theory scenarios. In particular we study the equations of motion
of both the dilaton and overall modulus of these theories in the presence of an ex-
panding Universe and under different assumptions. First we analyse the impact
of their couplings to matter fields, which turns out to be negligible in the string
and M-theory scenarios. Then we examine in detail the possibility of scaling in
M-theory, i.e. how the moduli would evolve naturally to their minima instead
of rolling past them in the presence of a dominating background. In this case
we find interesting and positive results, and we compare them to the analogous
situation in the heterotic string.
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1 Introduction

For a number of years now, our knowledge of the string world has greatly improved with
the discovery of M-theory as the origin of all the known perturbative string theories [1].
In particular, the D = 11 supergravity (SUGRA) limit of this theory (also known
as M-theory itself) has been extensively studied and, by now, we have quite a deep
understanding of many aspects of it.

However the issue of how to stabilize the moduli in these theories, and the role
they play in cosmology, is still an open one. This is because, in order to generate a
potential for the moduli, we must rely on non-perturbative physics which is not under
our control. Still, a few general results can be obtained, which encourage further inves-
tigation. In particular, supersymmetry (SUSY) breaking by gaugino condensation [2]
in the D = 4 effective theory works in a similar way as in the old heterotic string [3].
In fact it is possible to build many scenarios where multiple gaugino condensates con-
tribute to create a scalar potential for the moduli S and T that has minima at the
phenomenologically desired values (Re S, Re T ∼ O(20) in MP units) [4]. Also the
fact that the gaugino condensates depend exponentially on the gauge kinetic functions
(∼ e−αafa , where a labels each condensate, αa are related to the 1-loop beta function
coefficients and fa are the gauge kinetic functions), with 4πfa = S − βaT , instead of
fa = kaS as it was the case in the heterotic string, gives rise to the appearance of flat
directions in the scalar potential, opening up the possibility of inflation along those.
This was thoroughly studied in Ref. [5].

Despite of these promising results, there is a second issue we want to address in this
letter, which is the dynamical evolution of the other moduli, i.e. those which do not
have a flat direction and therefore would suffer from a ‘runaway problem’, given the
exponential nature of their potential. This problem, first pointed out by Brustein and
Steinhardt [6] in the context of the heterotic string, has been studied along the years
and several mechanisms have been proposed in order to alleviate it (see Refs [7–9]).
Our goal will be, exploiting the similarity between the heterotic string and M-theory
scenarios pointed out above, to examine this mechanism for dynamically stabilizing
moduli in the context of heterotic M-theory.

In order to do so, in section 2 we revise the status of the runaway problem in the
heterotic string, with particular emphasis on the recently proposed mechanism of Huey
et al. [9], and its applicability to string models. In section 3 we discuss the M-theory
setup: first we study the existence of scaling solutions in the presence of a dominating
background and then we consider the above-mentioned couplings of the moduli to
matter. Finally, we conclude in section 4.

2 Scaling solutions revisited

Let us briefly review the issue of scaling solutions in gaugino condensation models. It
is by now a standard result in cosmology that scalar fields with an exponential scalar
potential have scaling solutions that are global attractors [10–12]. In these scaling
solutions the field will evolve with the same equation of state as the background energy
density. As was explained in Ref. [8], the dilaton, S, in the heterotic string theory is a
perfect example of such scaling behaviour. This scalar particle has an exponential type
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potential which is steep enough to make the field roll past its minimum. However, if the
energy density of the Universe includes some barotropic fluid coupled to the dilaton
only gravitationally, this field will reach a constant velocity at late times, and will
evolve slowly down the exponential slope. This behaviour, however, can only stabilize
the dilaton if it starts its evolution to the left of its minimum.

More recently a new mechanism has been proposed [9] which could help stabilizing
moduli with exponential potentials both in their strong and weak coupling regimes. It
relies on the existence of couplings of these moduli (generically denoted by φ, with an
exponential type potential V0(φ)) to matter fields (which we will call C). These can
occur either through the kinetic terms (which, following Ref. [9], we parametrise as
f(φ)∂µC∂µC) or through the scalar potential (V1 ∼ g(φ)Cn). Assuming the C field to
be homogeneous, we define its energy density and pressure to be respectively,

ρC = fĊ2 + V1 , (1)

pC = fĊ2 − V1 . (2)

The equations of motion for φ and ρ are then given by

φ̈ + 3Hφ̇− ∂pC

∂φ
+

∂V0

∂φ
= 0 , (3)

ρ̇C = −
(

3H +
ḟ

2f

)
(ρC + pC) +

ġ

2g
(ρC − pC) , (4)

with H2 = 1
3
(φ̇2/2 + V0 + ρC). To be precise, we will consider the case where the C

field has coherent oscillations about its minimum. In this case, the energy density and
pressure, averaged over one oscillation, will obey the equation of state pC = wCρC ,
with wC = (n − 2)/(n + 2) from the virial theorem. We do this in order to have a
simple barotropic fluid as a background. A similar situation could be obtained if we
considered instead the field C to be in thermal equilibrium [9].

With these assumptions, the pressure derivative in Eq. (3) becomes

∂pC(φ, C, Ċ)

∂φ
=

(
(1 + wC)

1

f

∂f

∂φ
− (1− wC)

1

g

∂g

∂φ

)
ρC

2
, (5)

and Eq. (4) can be exactly solved to give

ρC(φ, a) = ρ0

(
a

a0

)−3(1+wC)
(

f

f0

)−(1+wC)/2 (
g

g0

)(1−wC)/2

, (6)

where a is the scale factor of the Universe and the subscript 0 denotes initial values of
the corresponding functions. Altogether we see that the new term −∂pC/∂φ can be
interpreted as a contribution to the total scalar potential of the φ field. In other words,
the coupled system will be equivalent to a single field system with a total potential
given by

Vtot = V0(φ) + Veff(φ) , (7)

with
V0(φ) ∼ e−αφ (8)
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Figure 1:
(a) Plot of the total scalar potential, given by Eq. (7), as a function of the dilaton φ (in MP units) in
a two condensate model with groups SU(6)2 × SU(7)8 and TR = 1.23 (see footnote 2). The different
curves correspond to different times -or number of e-folds N - in the evolution of the system. (b)

Evolution of the dilaton (φ), as in Eq. (11), as a function of N ≡ ln(a), for the same example as in
Fig. 1a and initial conditions given by φ0 = 13 (dashed), φ0 = 4 (solid).

and
Veff(φ) = ρC(φ) . (9)

Notice that ρC is now given by Eq. (6), an explicit function of time (or the scale factor,
a), as opposed to the ρC we had before integrating out the C field. They have both the
same value of course, but their partial derivatives with respect to φ will be different.
In particular, it is easy to show that

∂ρC(φ, a)

∂φ
= −∂pC(φ, C, Ċ)

∂φ
, (10)

the result we have used to obtain Eq. (9). This effective potential is represented in
Fig. 1a, where we show the shape of Vtot as a function of φ, for several values of
N ≡ ln(a) with wC = 1/3, for the particular case of f(φ) = g(φ) = 1/φ considered
in Ref. [9]. Here V0 is given by a two condensate model analogous to Eq. (4) of Ref. [9].
We can see that, at earlier times (i.e. for N small), the potential has a growing slope
to the right of the minimum, whose position changes with N . At late enough times
(i.e. for N large) this effective contribution fades away and we recover the original
exponential potential V0(φ). As we see in Fig. 1b, even for initial conditions in the
very weak coupling regime (characterised by large values of φ), the field rolls towards
its minimum1.

Despite of how promising this mechanism looks as a way of stabilizing moduli, it is
very sensitive to the particular forms of the functions f and g (recall f = g = 1/φ in
the above example). Therefore it is a natural step to proceed with the study of string

1It can be argued that, in the weak coupling regime, it would be inconsistent to consider the C field
in thermal equilibrium with the background. However this is beyond the scope of this paper which is
to show that in a string motivated scenario the effect of matter fields is negligible in any case.
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inspired models and, in particular, we shall devote some time to consider the dilaton
of the heterotic string and its couplings.

The first thing one must take into account is that, in the context of the heterotic
string, the dilaton S is not a canonically normalised field, i.e. its kinetic term is given
by KSS̄∂µS ∂µS̄, with KSS̄ = ∂2K/∂S∂S̄ and the tree-level Kähler potential given by
K = − ln(S + S̄). Therefore its equation of motion reads

S̈ + 3HṠ +
KSS̄S̄

KSS̄

Ṡ2 − 1

KSS̄

∂pC

∂S̄
+

1

KSS̄

∂V

∂S̄
= 0 , (11)

where KSS̄S̄ = ∂KSS̄/∂S̄ and H2 = 1
3
(KSS̄Ṡ2 + KCC̄Ċ2 + V (S, C)). It must be said,

however, that the term proportional to Ṡ2 is negligible in the region of values of S
studied here, and therefore this equation is very similar to the simpler Eq. (3) described
previously. The couplings to matter, contained in ∂pC/∂S, are determined by the
structure of the N=1 SUGRA Lagrangian that describes this string-inspired model2.
The kinetic term for C reads [13]

KCC̄∂µC∂µC̄ =
3

2TR

(
1 +

ε

6SR

)
∂µC∂µC̄ , (12)

where ε = δGS/4π2 is the so-called Green–Schwarz coefficient, which is generally small,
and SR ≡ ReS, TR ≡ ReT . Therefore in the parametrisation introduced before Eq. (1),
f(SR) is given by

f(SR) =
3

2TR

(
1 +

ε

6SR

)
. (13)

Finally, the form of the scalar potential is given by

V = eK



∑
i,j

(Wi + KiW )(Kj
i )
−1

(W̄ j + KjW̄ )− 3|W |2

 , (14)

where sub(super)scripts denote derivatives of W and K with respect to S (S̄) and
C (C̄), and W ∼ ∑

a e−αaS + C3 is the superpotential coming from multiple gaugino
condensation. The couplings between the two fields S and C arise from the term
eK |KCW + WC |2/KCC̄ . For C small, WC ∼ C2 will dominate and we can identify

g(SR) = eK/KCC̄ =
1

24T 2
RSR

. (15)

Therefore this coupling is of the form 1/SR.
We can now solve Eq. (11), and the result is that SR has the same runaway behaviour

that it would have had in the absence of the couplings to matter. Let us briefly sketch
why the mechanism of Ref. [9] does not work here: consider the general form for the
couplings f = a + b/SR, g = c + d/SR, with a, b, c, d real and positive. A slope to the
right of the minimum, such as those in Fig. 1a, will appear if, in Eq. (11), we require

2Note that, throughout this section in which we focus on the evolution of the dilaton, we are
assuming that the T modulus, whose vacuum expectation value (VEV) represents the overall size of
the compactified space, is fixed to its value at the minimum. We will include the T modulus explicitly
when considering heterotic M-theory scenarios in the next section.
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−∂pC/∂S > 0 to balance ∂V/∂S which is invariably negative (recall that V ∼ e−αS).
From Eq. (5) is it easy to translate this condition, for positive wC , into either of these
two

i) ad(1− wC)− bc(1 + wC) ≤ 0

(16)

ii) ad(1− wC)− bc(1 + wC) > 0 and SR <
2bdwC

ad(1− wC)− bc(1 + wC)
.

In Ref. [9], indeed wC = 1/3 is positive and f and g are such that a = c = 0, that
is this choice fulfils condition i) and their φ field is always trapped at the minimum.
In the heterotic string, however, c = 0 and a 6= 0, so we are in case ii), which implies
that the dilaton will be trapped only for initial conditions SR

<∼ b/a = ε/6 � 1, for any
values of wC 6= 1. This corresponds to the strong coupling regime and covers a very
small fraction of the parameter space. For completeness we can also consider the case
in which −1 ≤ wC ≤ 0, and now we will have only one condition for −∂pC/∂S > 0,
which is

ad(1− wC)− bc(1 + wC) < 0 and SR >
2bdwC

ad(1− wC)− bc(1 + wC)
. (17)

It is easy to see that, again, for the heterotic string where c = 0, this condition can
never be fulfilled.

Therefore to end this section we should conclude that, concerning the probability of
stabilizing the moduli in the Early Universe, the estimates of Horne and Moore [7] still
represent the most optimistic situation. They argued that the motion of the moduli
follows a chaotic trajectory and, out of the finite volume of possible initial conditions,
12-14% of it corresponds to cases where the dilaton will end up at its minimum. How-
ever, in Ref. [14] it was pointed out how, in their scenario, the inhomogeneous modes
would soon come to dominate the energy density of moduli fields. Finally, if we con-
sider the presence of a dominating background, then the estimates of Ref. [8] remain
unaltered in the presence of above-mentioned couplings to matter fields.

3 Dynamics of the moduli in M-theory

In this section we will try to apply the same ideas, namely the evolution of moduli fields
in the presence of some background matter, to study the evolution of the real parts of
the S and T moduli in heterotic M-theory. From a phenomenological point of view, one
of the main differences between the two models is that the gauge kinetic functions in the
hidden wall, fa (whose VEV determine the gauge coupling constants) are now a linear
combination of the string dilaton and modulus fields, i.e fa = (S−βaT )/(4π) where βa

are constants that depend on the details of the model and are usually of order one [15]
(in particular, in all the examples shown in this paper we have fixed βa = β = 1/2).
Assuming once again that gaugino condensation is the source of SUSY breaking, the
scalar potential will have an exponential like profile, as in the string case, along the
direction defined by Φ− ≡ S − βT . Along its orthogonal direction, Φ+ ≡ βS + T ,
the potential will be almost flat, the only dependence upon this variable coming from
the Kähler potential K. We will consider potentials where a minimum is generated
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along the Φ− direction with two gaugino condensates. This defines a ‘valley’ in the Φ+

direction with an inverse power law profile, and the global minimum is obtained with
a third condensate, or a non-perturbative correction to the Kähler potential [4, 5].

Let us start with the simplest case, when the S and T fields have no direct coupling
to the background fluid. As we have just said we have essentially two major directions
in our scalar potential, an exponential slope for the Φ− field and an inverse power-law
for the Φ+ field. In the exponential part of the potential we expect the field Φ− to
dominate the evolution, behaving in a similar way to the dilaton in the heterotic string
case [8]. However, in the valley defined by Φ− = Φmin

− , we expect the evolution to be
driven by the Φ+ field along the valley. Therefore the stabilization of the fields will
rely on a two-step process, first the evolution into the valley, and then the stabilization
along the valley to the minimum (see Fig. 2).

We will analyse the behaviour of the fields in this model using a numerical simulation
with a specific example. The equations of motion of the two fields, with no direct
couplings to the background, is given by

S̈ + 3HṠ +
KSS̄S̄

KSS̄

Ṡ2 +
1

KSS̄

∂V

∂S̄
= 0 (18)

T̈ + 3HṪ +
KT T̄ T̄

KT T̄

Ṫ 2 +
1

KT T̄

∂V

∂T̄
= 0 , (19)

with the Hubble constant now being given by

H2 =
1

3
(KSS̄Ṡ ˙̄S + KT T̄ Ṫ ˙̄T + V + ρB) , (20)

where ρB is the background energy density. We evolve both fields simultaneously, since
the flat directions in the scalar potential do not coincide with the ones in the Kähler
potential. As detailed in Ref. [5], the scalar potential is explicitly given by

V = eK

{
1

KSS̄

|WS + KSW |2 +
1

KT T̄

|WT + KT W |2 − 3|W |2
}

, (21)

where W , the superpotential for multiple gaugino condensation, reads as

W =
∑
a

Cae
−αaΦ− , (22)

with Ca and αa being constants related to the one-loop beta-function coefficients of
the corresponding condensing groups. We will consider for the numerical examples the
case of two condensates, SU(3) × SU(4), with 8 pairs of matter fields transforming as
(4, 4̄). The Kähler potential is given by

K(SR, TR) = − log(S + S̄)− 3 log(T + T̄ ) + Knp(SR) , (23)

where the first two terms are the tree level result and Knp accounts for non-perturbative
corrections. We will use for the numerical examples the ansatz for Knp introduced in
Ref. [17],

Knp =
D

B
√

SR

log
(
1 + e−B(

√
SR−

√
S0)
)

(24)
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Figure 2:
Contour plot of the scalar potential V in terms of SR, TR. The thick lines represent the trajectories
of the fields in the presence of the corresponding backgrounds, in particular the upper right line
corresponds to no background present. The parameters used for Knp are B = 120 and D = 0.13. One
can see that when a background fluid is present, the range of initial conditions allowing stabilization
is highly improved.

where we fix S0 = 19, and for each particular value of B we choose D so that the
cosmological constant is equal to zero.

Let us then start analysing the evolution of the fields outside the valley in the scalar
potential. In Fig. 3 we show the numerical evolution of the fields’ equation of state,
wΦ, as a function of Φ− before the fields reach the valley at Φmin

− = 11.07. A set of
different initial conditions and different types of background fluid were considered.

It is easy to see from this plot that the behaviour of the fields outside the valley is
very similar to the case of the dilaton in the heterotic string case. That is, they will
quickly reach a scaling solution in which their energy density scales with the background
with roughly the same equation of state (i.e. wΦ ∼ wB ≡ pB/ρB). As in the string
case, this will be enough to slow down the evolution of the fields and allow them to
settle in the valley for a wide range of initial conditions. However, note in Fig. 2 that
the evolution of the fields is not orthogonal to the direction of the valley. In other
words, Φ− and Φ+ scale simultaneously. The direction of the evolution is determined
from the scalar potential gradient and the Kähler potentials of the two fields, and it is
not possible to estimate it analytically.

The main differences with the heterotic string case arise once the fields have settled
in the valley. In order to be stabilized, they still have to evolve inside the valley
towards the minimum. The valley corresponds approximately to a constant Φ−, which
we denote as Φmin

− , so that the evolution at this stage will be dominated by the Φ+

field. The effective scalar potential for the Φ+ field is power-law like. To be precise,
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Figure 3:
Equation of state of the system of fields Φ−, Φ+ as a function of Φ− before reaching the minimum
at Φmin

− ≈ 11.07. From top to bottom the different curves correspond to the following choice of
background (wB): 1/3, 0, -1/3, -2/3.

the dominating term is the eK factor in Eq. (21), that is

V ≈ V0

(βΦ+ + Φmin− )(Φ+ − βΦmin− )3
, (25)

where V0 is a constant that can be estimated analytically (exactly for the D=0 case) and
Φmin
− is understood to be held constant. In this approximation, where Φ− is constant,

one can also write an effective kinetic term for the Φ+ field given in terms of the
kinetic terms for the S and T fields. Namely, since S = (βΦ+ + Φ−)/(1 + β2) and
T = (Φ+ − βΦ−)/(1 + β2), we have that

KSS̄Ṡ2 + KT T̄ Ṫ 2 ≈ β2KSS̄ + KT T̄

(1 + β2)2
Φ̇2

+ . (26)

The final result is a field which has a power-law type potential and a kinetic term that
is inversely proportional to Φ2

+. If we transform it into a real field, σ, with canonical

kinetic terms, 1
2
σ̇2, it is easy to check that σ =

√
2 log Φ+ and therefore its effective

scalar potential will be an exponential. Hence, we expect the behaviour at late times
to be the usual scaling solution associated with exponential potentials. To be more
precise, for large values of the field the effective potential, Eq. (25), goes as 1/Φ4

+, and

therefore the effective scalar potential for σ is V (σ) = e−2
√

2σ. Without a minimum,
that is for Knp = 0, this is exactly the scaling solution one obtains numerically for late
times.

This is a nice result in itself, showing that the fields tend to join scaling solutions
(albeit ones of different type) when in the presence of a background, both in the valley
and outside it. However, the time the fields take to reach the scaling solution in the
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valley is considerably longer. This means that they will usually reach the minimum
of the potential before acquiring a scaling behaviour. This in itself does not stop the
fields from being trapped at the minimum, since the background is already slowing them
down considerably, but it does mean that an analytical approach is much more difficult,
since the field reaches the minimum at an intermediate regime, between prescaling and
scaling.

We can have an idea of the range of initial conditions that stabilize the fields by
looking at Table 1. First of all, if the value of ρ0

B is too small, the fields will begin
to evolve as if there was no background (that is, they will not stay in the minimum
unless they start really close to it). Once the background becomes important, the
actual value of ρ0

B does not really affect the evolution, since the fields will just stay
frozen until the energy densities of the fields and background become comparable.
Therefore we chose to fix ρ0

B = 1020 in the examples given in Table 1. The value of wB,
on the other hand, affects drastically the results. The lower it is, the easier it is for
the fields to be stabilized. This is not too surprising, since a smaller wB corresponds
to a universe where the potential terms dominate over the kinetic terms (and recall
that the fields will mimic the background once they reach their scaling solutions).
Moreover, different values of the (B, D) parameters in the non-perturbative Kähler
will give slightly different answers. In short, the smaller the B parameter, the less fine
tuned is the minimum in the scalar potential, and the easier it is to stabilize the fields.
Finally, one can check that the further the fields are from the minimum when they hit
the valley, the more difficult the stabilization becomes. The full evolution for specific
examples where stabilization is achieved can be seen in Fig. 2.

Knp (B, D) T 0
R wB Stability

(120, 0.13) 16 1/3
√

(120, 0.13) 14 0 ×
(120, 0.13) 14 -1/3

√
(120, 0.13) 10 -1/3 ×
(120, 0.13) 10 -2/3

√
(120, 0.13) 6 -2/3 ×
(50, 0.33) 6 -2/3

√
(50, 0.33) 6 -1/3 ×
(10, 2.18) 6 -1/3

√
(10, 2.18) 6 0 ×

Table 1: Examples of points in parameter space for which the fields are -or not- stabi-
lized at the minimum. In all of them ρ0

B = 1020 and S0
R = 14.

Let us finally turn to the case where the dilaton and modulus fields have direct
couplings to the background fields. As for the string case considered in Section 2, we
will again model the background as a scalar field C with a coupling f(SR, TR) in the
kinetic terms, and g(SR, TR) in the scalar potential. Its energy density and pressure is
again given by Eqs (1,2) and the dilaton and modulus equations of motion by Eq. (18)
and Eq. (19) respectively. The couplings are now functions of both fields [15], namely

f(SR, TR) =
3

2TR
+

β

2SR
, (27)
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g(SR, TR) =
1

4T 2
R(3SR + βTR)

. (28)

The situation here is similar to the heterotic string case if slightly more involved. Again,
∂V/∂S is always negative (except near the valley where the condensates cancel each
other), and the S field tends to go to infinity. If the interaction term in Eq. (11) is to
cancel this natural tendency, then we require ∂pC/∂S < 0. It is easy to check that, for
positive S and T , this is equivalent to S < 2β/3T . This only happens for S smaller
than its minimum value, so if the initial conditions are larger than this, the field will
always run away to infinity. For the T field, however, things do change. The derivative
term ∂V/∂T is always positive (again, except near the valley), and therefore the field
will tend to go to zero (it will never become negative since its kinetic term diverges
at zero). It is possible to check that ∂pC/∂T has the same sign as pC and therefore,
for positive background pressure, the coupling term balances the potential term in the
equation of motion for T . Indeed, we have checked numerically that the T field will
tend to go to a non-zero constant in the presence of these coupling terms. This can
also be understood analytically if one looks for the asymptotic solutions in this regime.

Finally let us add that this analysis was performed in the absence of non-perturbative
corrections to the Kähler potential, Knp(SR) (notice the form of Eq. (28)). In the pres-
ence of such corrections, that would only affect the behaviour of the S field, we would
have to replace Eq. (28) by eKnpg(SR, TR), and its derivative with respect to SR would
be now eKnp(∂g/∂SR +g∂Knp/∂SR). Given that ∂Knp/∂SR is also negative, this would
not alter the conclusions we just reached about the evolution of S.

In short, adding the interaction terms only improves the situation for the T field.
In practice, this means that the fields still have to start to the left of the valley in the
scalar potential if they are to become trapped at the minimum. We did not find any
improvement in the allowed regions of parameter space presented in Table 1 when we
included couplings with the matter fields.

4 Conclusions

In this letter we have addressed the dynamical evolution of moduli fields in several
string/M-theory scenarios. In all of them the dynamics are provided by assuming
gaugino condensation in the hidden sector of the theory as the source of SUSY breaking
and, therefore, of a non flat potential for these fields. Following our previous work
on the existence of scaling solutions for the dilaton evolution in the heterotic string,
which provided a solution to the so-call ‘runaway problem’ pointed out by Brustein
and Steinhardt, we investigated here the impact of a recent proposal to also stabilize
moduli of considering the couplings of moduli to matter fields. After a thorough study
of the issue in the context of the heterotic string we concluded that these couplings do
not seem to affect stabilization for realistic string settings.

Next we considered M-theory scenarios, where there is also a runaway problem
associated, in this case, to the combination of dilaton and modulus, Φ−, which has an
exponential-type potential analogous to that of the dilaton in the heterotic string. Here
we study the evolution equations for both Φ+ and Φ− in the presence of a dominating
background, in order to see whether we can also reach a scaling regime that will make
the fields settle at their minima instead of rolling past them. It turns out that such
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a regime, i.e. scaling, is achieved but at late stages of the moduli evolution, with the
result that these fields are not stabilized while scaling, but in an intermediate regime.
This makes it extremely difficult to perform an analytic study of the problem but,
nevertheless, we have been able to determine a wide region of the parameter space
(essentially defined by the initial positions of the fields, the type of background and
the characteristics of the non-perturbative Kähler potential) for which the stabilization
is successful. Finally, we considered the couplings of moduli to matter fields, and we
concluded that the situation is the same as in the heterotic string case, i.e. these
couplings do not contribute at all to improve the stabilization problem of the moduli.

Acknowledgements

We thank Ed Copeland for useful discussions. We would also like to thank Toni Riotto
and the authors of Ref. [9] for fruitful discussions on the issue of couplings to matter
fields. The work of TB was supported by PPARC, and that of NJN by Fundação para
a Ciência e a Tecnologia (Portugal). TB thanks the Theory Division at CERN for
hospitality during the initial stages of this work.

References
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