21 research outputs found

    Decongestion improving right heart function ameliorates prognosis after an acute heart failure episode.

    Get PDF
    The prognostic role of decongestion-related change of cardiac morphology and in particular right heart function has not been investigated comprehensively in AHF patients. This prospective observational single-centre study included consecutive patients hospitalized for treatment of AHF with reduced, mildly-reduced or preserved left ventricular ejection fraction (LVEF). Comprehensive transthoracic echocardiography at admission and discharge assessed decongestion-related change of cardiac function and morphology. The combined endpoint of 1 year all-cause mortality and cardiovascular rehospitalization explored the prognostic importance of decongestion-related change. The 176 study participants were 83 years old [74-87] and 54% were men. Fifty one (29%) had rLVEF, 65 (37%) mrLVEF, and 60 (34%) pLVEF. The proportion of de novo or worsening chronic HF was not different between LVEF groups. HF aetiology and cardiovascular risk factors were equally distributed across all groups except for a higher BMI in the pLVEF group. Decongestion equally reduced body weight, heart rate, systolic and diastolic blood pressure, tricuspid regurgitation gradient, and inferior vena cava diameter across all groups (P < 0.004 for all). Decongestion-related increase in TAPSE independent of the LVEF was associated with improvement of right-ventricular-pulmonary artery coupling and a lower incidence of the combined outcome in the Cox proportional hazard risk analysis (unadjusted HR 0.50 95% CI 0.33-0.78, P = 0.002; adjusted HR 0.46 95% CI: 0.33-0.78, P = 0.001). Decongestion-related increase in TAPSE and recovery of RV/pulmonary artery coupling was observed across all LVEF groups and associated with a risk reduction for the combined endpoint highlighting the important prognostic role of right heart recovery after an AHF episode

    The Interleukin 22 Pathway Interacts with Mutant KRAS to Promote Poor Prognosis in Colon Cancer.

    No full text
    The cytokine IL22 promotes tumor progression in murine models of colorectal cancer. However, the clinical significance of IL22 in human colorectal cancer remains unclear. We sought to determine whether the IL22 pathway is associated with prognosis in human colorectal cancer, and to identify mechanisms by which IL22 can influence disease progression. Transcriptomic data from stage II/III colon cancers in independent discovery (GSE39582 population-based cohort, N = 566) and verification (PETACC3 clinical trial, N = 752) datasets were used to investigate the association between IL22 receptor expression (encoded by the genes IL22RA1 and IL10RB), tumor mutation status, and clinical outcome using Cox proportional hazard models. Functional interactions between IL22 and mutant KRAS were elucidated using human colorectal cancer cell lines and primary tumor organoids. Transcriptomic analysis revealed a poor-prognosis subset of tumors characterized by high expression of IL22RA1, the alpha subunit of the heterodimeric IL22 receptor, and KRAS mutation [relapse-free survival (RFS): HR = 2.93, P = 0.0006; overall survival (OS): HR = 2.45, P = 0.0023]. KRAS mutations showed a similar interaction with IL10RB and conferred the worst prognosis in tumors with high expression of both IL22RA1 and IL10RB (RFS: HR = 3.81, P = 0.0036; OS: HR = 3.90, P = 0.0050). Analysis of human colorectal cancer cell lines and primary tumor organoids, including an isogenic cell line pair that differed only in KRAS mutation status, showed that IL22 and mutant KRAS cooperatively enhance cancer cell proliferation, in part through augmentation of the Myc pathway. Interactions between KRAS and IL22 signaling may underlie a previously unrecognized subset of clinically aggressive colorectal cancer that could benefit from therapeutic modulation of the IL22 pathway

    Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors.

    No full text
    We investigated the role of chemokines in regulating T cell accumulation in solid tumors. CCL5 and CXCL9 overexpression was associated with CD8 <sup>+</sup> T cell infiltration in solid tumors. T cell infiltration required tumor cell-derived CCL5 and was amplified by IFN-γ-inducible, myeloid cell-secreted CXCL9. CCL5 and CXCL9 coexpression revealed immunoreactive tumors with prolonged survival and response to checkpoint blockade. Loss of CCL5 expression in human tumors was associated with epigenetic silencing through DNA methylation. Reduction of CCL5 expression caused tumor-infiltrating lymphocyte (TIL) desertification, whereas forced CCL5 expression prevented Cxcl9 expression and TILs loss, and attenuated tumor growth in mice through IFN-γ. The cooperation between tumor-derived CCL5 and IFN-γ-inducible CXCR3 ligands secreted by myeloid cells is key for orchestrating T cell infiltration in immunoreactive and immunoresponsive tumors

    Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors

    No full text
    We investigated the role of chemokines in regulating T cell accumulation in solid tumors. CCL5 and CXCL9 overexpression was associated with CD8+ T cell infiltration in solid tumors. T cell infiltration required tumor cell-derived CCL5 and was amplified by IFN-γ-inducible, myeloid cell-secreted CXCL9. CCL5 and CXCL9 coexpression revealed immunoreactive tumors with prolonged survival and response to checkpoint blockade. Loss of CCL5 expression in human tumors was associated with epigenetic silencing through DNA methylation. Reduction of CCL5 expression caused tumor-infiltrating lymphocyte (TIL) desertification, whereas forced CCL5 expression prevented Cxcl9 expression and TILs loss, and attenuated tumor growth in mice through IFN-γ. The cooperation between tumor-derived CCL5 and IFN-γ-inducible CXCR3 ligands secreted by myeloid cells is key for orchestrating T cell infiltration in immunoreactive and immunoresponsive tumors. Dangaj et al. show that tumor cell-expressed CCL5 and macrophage- and DC-expressed CXCL9 are important for the infiltration of T cells into tumors, a process that also requires recognition of tumor antigens by T cells. CCL5 is often epigenetically silenced in tumor cells but can be reactivated by Decitabine. © 2019 Elsevier Inc

    Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation.

    No full text
    The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8 <sup>+</sup> TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1 <sup>+</sup> CD8 <sup>+</sup> TIL can be, however, polyfunctional. PD-1 <sup>+</sup> TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8 <sup>+</sup> TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L
    corecore