81 research outputs found

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Digital Image Correlation accuracy: influence of kind of speckle and recording setup

    No full text
    Digital Image Correlation (DIC) is a popular optical technique which allows the measurement of displacement and strain fields on an object surface showing a random speckle pattern. To use its extension to 3D cases (called Digital Volume Correlation, DVC), it is often necessary to include particles in the material in order to have a sufficient contrast. However, as these particles are more rigid than the material, it is not sure that the correlation technique is able to follow exactly strains on the speckle pattern made of powder. As the digital recording process by CCD camera and correlation algorithms are the same between 2D and 3D cases, this study is then conducted in 2D cases in order to show the influence of the powder in the speckle pattern on the evaluation of displacement by DIC linked to the choice of the type of interpolation, of CCD cameras and lighting. In displacement tests, only the recording setup seems to have a strong influence on the accuracy of measurements. For strain experiments, powder has an effect on strain measurements over 10%

    Experimental validation of a numerical simulation on a ballscrew system by 3D photoelasticity

    No full text
    The Trimmable Horizontal Stabilizer Actuator (THSA system) equips the whole airbus line. One component of this system is a ball-screw system on which spalling problems appear on the balls. This phenomenon is mostly due to local high pressures and reduces the service life of the system. 3D numerical simulations are usually used to tackle this kind of problems but are subjected to assumptions. As the aim of the project is to build a numerical model able to predict pressure distribution, these assumptions need to be experimentally assessed to be perfectly relevant of the real load distribution in the ball screw system. Due to the 3D geometry of the specimen, a 3D measurement technique, Scattered Light Photoelasticity (SLP), has been chosen to perform experimental measurements,. Because of complexity of the geometry, the study is divided in three steps; the present paper is dealing with the second one where a demonstrator ball-screw system is manufactured in casted epoxy to perform the SLP. This technique gives information on 3D stress fields inside the epoxy specimen from the analysis of photoelastic fringes. They are compared to numerical ones and indicate whether numerical boundary conditions are relevant of the experimental ball-screw system behaviour

    X-ray computed tomography coupled to Digital Volume Correlation applied to a stationary crack case

    No full text
    The aim of this study is to evaluate 3D numerical simulation and 2D theory on a single edge notch cracked specimen loaded in mode I in light of experimental data. The three displacement components through the whole specimen were measured by Digital Volume Correlation coupled to X-ray micro-computed tomography. The theoretical approach gives higher results than the experimental ones, which means that the plane-stress theory is not relevant of the reality in this particular case. On the contrary, the numerical simulation made on the finite element software CASTEM gives results similar to the experimental ones with differences equivalent to the accuracy of the experimental method
    • …
    corecore