276 research outputs found
Analysis of travelling waves associated with the modelling of aerosolised skin grafts
A previous model developed by the authors investigates the growth patterns of keratinocyte cell colonies after they have been applied to a burn site using a spray technique. In this paper, we investigate a simplified one-dimensional version of the model. This model yields travelling wave solutions and we analyse the behaviour of the travelling waves. Approximations for the rate of healing and maximum values for both the active healing and the healed cell densities are obtained
Breast cancer resistance protein identifies clonogenic keratinocytes in human interfollicular epidermis
INTRODUCTION: There is a practical need for the identification of robust cell-surface markers that can be used to enrich for living keratinocyte progenitor cells. Breast cancer resistance protein (ABCG2), a member of the ATP binding cassette (ABC) transporter family, is known to be a marker for stem/progenitor cells in many tissues and organs. METHODS: We investigated the expression of ABCG2 protein in normal human epidermis to evaluate its potential as a cell surface marker for identifying and enriching for clonogenic epidermal keratinocytes outside the pilosebaceous tract. RESULTS: Immunofluorescence and immunoblotting studies of human skin showed that ABCG2 is expressed in a subset of basal layer cells in the epidermis. Flow cytometry analysis showed approximately 2-3% of keratinocytes in non-hair-bearing epidermis expressing ABCG2; this population also expresses p63, β1 and α6 integrins and keratin 14, but not CD34, CD71, C-kit or involucrin. The ABCG2-positive keratinocytes showed significantly higher colony forming efficiency when co-cultured with mouse 3T3 feeder cells, and more extensive long-term proliferation capacity in vitro, than did ABCG2-negative keratinocytes. Upon clonal analysis, most of the freshly isolated ABCG2-positive keratinocytes formed holoclones and were capable of generating a stratified differentiating epidermis in organotypic culture models. CONCLUSIONS: These data indicate that in skin, expression of the ABCG2 transporter is a characteristic of interfollicular keratinocyte progentior cells and suggest that ABCG2 may be useful for enriching keratinocyte stem cells in human interfollicular epidermis
Self-Assembling Peptide Nanofiber Scaffolds Accelerate Wound Healing
Cutaneous wound repair regenerates skin integrity, but a chronic failure to heal results in compromised tissue function and increased morbidity. To address this, we have used an integrated approach, using nanobiotechnology to augment the rate of wound reepithelialization by combining self-assembling peptide (SAP) nanofiber scaffold and Epidermal Growth Factor (EGF). This SAP bioscaffold was tested in a bioengineered Human Skin Equivalent (HSE) tissue model that enabled wound reepithelialization to be monitored in a tissue that recapitulates molecular and cellular mechanisms of repair known to occur in human skin. We found that SAP underwent molecular self-assembly to form unique 3D structures that stably covered the surface of the wound, suggesting that this scaffold may serve as a viable wound dressing. We measured the rates of release of EGF from the SAP scaffold and determined that EGF was only released when the scaffold was in direct contact with the HSE. By measuring the length of the epithelial tongue during wound reepithelialization, we found that SAP scaffolds containing EGF accelerated the rate of wound coverage by 5 fold when compared to controls without scaffolds and by 3.5 fold when compared to the scaffold without EGF. In conclusion, our experiments demonstrated that biomaterials composed of a biofunctionalized peptidic scaffold have many properties that are well-suited for the treatment of cutaneous wounds including wound coverage, functionalization with bioactive molecules, localized growth factor release and activation of wound repair
Molecular and cellular characterization of ABCG2 in the prostate
BACKGROUND: Identification and characterization of the prostate stem cell is important for understanding normal prostate development and carcinogenesis. The flow cytometry-based side population (SP) technique has been developed to isolate putative adult stem cells in several human tissue types including the prostate. This phenotype is mainly mediated by the ATP-binding cassette membrane transporter ABCG2. METHODS: Immunolocalization of ABCG2 was performed on normal prostate tissue obtained from radical prostatectomies. Normal human prostate SP cells and ABCG2(+ )cells were isolated and gene expression was determined with DNA array analysis and RT-PCR. Endothelial cells were removed by pre-sorting with CD31. RESULTS: ABCG2 positive cells were localized to the prostate basal epithelium and endothelium. ABCG2(+ )cells in the basal epithelium constituted less than 1% of the total basal cell population. SP cells constituted 0.5–3% of the total epithelial fraction. The SP transcriptome was essentially the same as ABCG2(+ )and both populations expressed genes indicative of a stem cell phenotype, however, the cells also expressed many genes in common with endothelial cells. CONCLUSION: These results provide gene expression profiles for the prostate SP and ABCG2(+ )cells that will be critical for studying normal development and carcinogenesis, in particular as related to the cancer stem cell concept
Bistability and Oscillations in Gene Regulation Mediated by Small Noncoding RNAs
The interplay of small noncoding RNAs (sRNAs), mRNAs, and proteins has been shown to play crucial roles in almost all cellular processes. As key post-transcriptional regulators of gene expression, the mechanisms and roles of sRNAs in various cellular processes still need to be fully understood. When participating in cellular processes, sRNAs mainly mediate mRNA degradation or translational repression. Here, we show how the dynamics of two minimal architectures is drastically affected by these two mechanisms. A comparison is also given to reveal the implication of the fundamental differences. This study may help us to analyze complex networks assembled by simple modules more easily. A better knowledge of the sRNA-mediated motifs is also of interest for bio-engineering and artificial control
Holoclone Forming Cells from Pancreatic Cancer Cells Enrich Tumor Initiating Cells and Represent a Novel Model for Study of Cancer Stem Cells
Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells.Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted.Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3 cell line. Generation of holoclones can serve as a novel model for studying cancer stem cells, and attribute to developing new anti-cancer drugs
Characterisation of a divergent progenitor cell sub-populations in human osteoarthritic cartilage: the role of telomere erosion and replicative senescence
In recent years it has become increasingly clear that articular cartilage harbours a viable pool ofprogenitor cells and interest has focussed on their role during development and disease. Analysis ofprogenitor numbers using fluorescence-activated sorting techniques has resulted in wide-rangingestimates, which may be the result of context-dependent expression of cell surface markers. Wehave used a colony-forming assay to reliably determine chondroprogenitor numbers in normal andosteoarthritic cartilage where we observed a 2-fold increase in diseased tissue (P < 0.0001). Intriguingly,cell kinetic analysis of clonal isolates derived from single and multiple donors of osteoarthritic cartilagerevealed the presence of a divergent progenitor subpopulation characterised by an early senescentphenotype. Divergent sub-populations displayed increased senescence-associated β–galactosidaseactivity, lower average telomere lengths but retained the capacity to undergo multi-lineagedifferentiation. Osteoarthritis is an age-related disease and cellular senescence is predicted to be asignificant component of the pathological process. This study shows that although early senescenceis an inherent property of a subset of activated progenitors, there is also a pool of progenitors withextended viability and regenerative potential residing within osteoarthritic cartilage
Caffeine Prevents Transcription Inhibition and P-TEFb/7SK Dissociation Following UV-Induced DNA Damage
Background: The mechanisms by which DNA damage triggers suppression of transcription of a large number of genes are poorly understood. DNA damage rapidly induces a release of the positive transcription elongation factor b (P-TEFb) from the large inactive multisubunit 7SK snRNP complex. P-TEFb is required for transcription of most class II genes through stimulation of RNA polymerase II elongation and cotranscriptional pre-mRNA processing. Methodology/Principal Findings: We show here that caffeine prevents UV-induced dissociation of P-TEFb as well as transcription inhibition. The caffeine-effect does not involve PI3-kinase-related protein kinases, because inhibition of phosphatidylinositol 3-kinase family members (ATM, ATR and DNA-PK) neither prevents P-TEFb dissociation nor transcription inhibition. Finally, caffeine prevention of transcription inhibition is independent from DNA damage. Conclusion/Significance: Pharmacological prevention of P-TEFb/7SK snRNP dissociation and transcription inhibitio
- …