28 research outputs found

    The epidemiology of enterococci

    Full text link
    The enterococci are emerging as a significant cause of nosocomial infections, accounting for approximately 10 % of hospital acquired infections. They are found as normal inhabitants of the human gastrointestinal tract, but may also colonize the oropharynx, vagina, perineal region and soft tissue wounds of asymtomatic patients. Until recently, evidence indicated that most enterococcal infections arose from patients' own endogenous flora. Recent studies, however, suggest that exogeneous acquisition may occur and that person-to-person spread, probably on the hands of medical personnel, may be a significant mode of transmission of resistant enterococci within the hospital. The use of broad-spectrum antibiotics, especially cephalosporins, is another major factor in the increasing incidence of enterococcal infections. These findings suggest that barrier precautions, as applied with other resistant nosocomial pathogens, along with more judicial use of antibiotics may be beneficial in preventing nosocomial spread of resistant enterococci.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47899/1/10096_2005_Article_BF01963631.pd

    Genetics of Moyamoya disease

    Full text link
    Moyamoya disease (MMD) is a disease pattern consisting of bilateral stenosis of the intracranial internal carotid arteries (ICA) accompanied by a network of abnormal collateral vessels that bypass the stenosis. Once symptomatic, insufficient cerebral blood flow or rupture of the fragile collaterals may cause stroke or hemorrhage, resulting in severe neurological dysfunction or death. The etiology of MMD is still unknown, although few associations with other diseases and environmental factors have been described. Strong regional differences in epidemiological data, as well as known familial cases, turned the focus to genetics for the insight into the disease's pathogenesis. Thus far, several reports have suggested specific genetic loci and individual genes as predisposing to MMD, but none have demonstrated reproducible results in independent cohorts. Small sample sizes, as well as a likely multifactorial origin, seem to be the most challenging tasks in identifying the disease-causing mechanisms. Once identified, susceptibility genes may allow preventive screening and a possible development of novel therapeutic options

    Organization of Nucleotides in Different Environments and the Formation of Pre-Polymers

    No full text
    RNA is a linear polymer of nucleotides linked by a ribose-phosphate backbone. Polymerization of nucleotides occurs in a condensation reaction in which phosphodiester bonds are formed. However, in the absence of enzymes and metabolism there has been no obvious way for RNA-like molecules to be produced and then encapsulated in cellular compartments. We investigated 5′-adenosine monophosphate (AMP) and 5′-uridine monophosphate (UMP) molecules confined in multi-lamellar phospholipid bilayers, nanoscopic films, ammonium chloride salt crystals and Montmorillonite clay, previously proposed to promote polymerization. X-ray diffraction was used to determine whether such conditions imposed a degree of order on the nucleotides. Two nucleotide signals were observed in all matrices, one corresponding to a nearest neighbour distance of 4.6 Å attributed to nucleotides that form a disordered, glassy structure. A second, smaller distance of 3.4 Å agrees well with the distance between stacked base pairs in the RNA backbone, and was assigned to the formation of pre-polymers, i.e., the organization of nucleotides into stacks of about 10 monomers. Such ordering can provide conditions that promote the nonenzymatic polymerization of RNA strands under prebiotic conditions. Experiments were modeled by Monte-Carlo simulations, which provide details of the molecular structure of these pre-polymers
    corecore