323 research outputs found

    Newtonian limit of the singular f(R) gravity in the Palatini formalism

    Full text link
    Recently D. Vollick [Phys. Rev. D68, 063510 (2003)] has shown that the inclusion of the 1/R curvature terms in the gravitational action and the use of the Palatini formalism offer an alternative explanation for cosmological acceleration. In this work we show not only that this model of Vollick does not have a good Newtonian limit, but also that any f(R) theory with a pole of order n in R=0 and its second derivative respect to R evaluated at Ro is not zero, where Ro is the scalar curvature of background, does not have a good Newtonian limit.Comment: 9 page

    Stellar explosion in the weak field approximation of the Brans-Dicke theory

    Full text link
    We treat a very crude model of an exploding star, in the weak field approximation of the Brans-Dicke theory, in a scenario that resembles some characteristics data of a Type Ia Supernova. The most noticeable feature, in the electromagnetic component, is the relationship between the absolute magnitude at maximum brightness of the star and the decline rate in one magnitude from that maximum. This characteristic has become one of the most accurate method to measure luminosity distances to objects at cosmological distances. An interesting result is that the active mass associated with the scalar field is totally radiated to infinity, representing a mass loss in the ratio of the "tensor" component to the scalar component of 1 to (2ω+3)(2 \omega + 3) (ω\omega is the Brans-Dicke parameter), in agreement with a general result of Hawking. Then, this model shows explicitly, in a dynamical case, the mechanism of radiation of scalar field, which is necessary to understand the Hawking result.Comment: 11 pages, no figures. Published in Class. Quantum Gravity V22 (2005

    TTF-1/p63-positive poorly differentiated NSCLC: A histogenetic hypothesis from the basal reserve cell of the terminal respiratory unit

    Get PDF
    TTF-1 is expressed in the alveolar epithelium and in the basal cells of distal terminal bronchioles. It is considered the most sensitive and specific marker to define the adenocarcinoma arising from the terminal respiratory unit (TRU). TTF-1, CK7, CK5/6, p63 and p40 are useful for typifying the majority of non-small-cell lung cancers, with TTF and CK7 being typically expressed in adenocarcinomas and the latter three being expressed in squamous cell carcinoma. As tumors with coexpression of both TTF-1 and p63 in the same cells are rare, we describe different cases that coexpress them, suggesting a histogenetic hypothesis of their origin. We report 10 cases of poorly differentiated non-small-cell lung carcinoma (PD-NSCLC). Immunohistochemistry was performed by using TTF-1, p63, p40 (∆Np63), CK5/6 and CK7. EGFR and BRAF gene mutational analysis was performed by using real-time PCR. All the cases showed coexpression of p63 and TTF-1. Six of them showing CK7+ and CK5/6− immunostaining were diagnosed as “TTF-1+ p63+ adenocarcinoma”. The other cases of PD-NSCLC, despite the positivity for CK5/6, were diagnosed as “adenocarcinoma, solid variant”, in keeping with the presence of TTF-1 expression and p40 negativity. A “wild type” genotype of EGFR was evidenced in all cases. TTF1 stained positively the alveolar epithelium and the basal reserve cells of TRU, with the latter also being positive for p63. The coexpression of p63 and TTF-1 could suggest the origin from the basal reserve cells of TRU and represent the capability to differentiate towards different histogenetic lines. More aggressive clinical and morphological features could characterize these “basal-type tumors” like those in the better known “basal-like” cancer of the breast

    Equilibrium hydrostatic equation and Newtonian limit of the singular f(R) gravity

    Get PDF
    We derive the equilibrium hydrostatic equation of a spherical star for any gravitational Lagrangian density of the form L=−gf(R)L=\sqrt{-g}f(R). The Palatini variational principle for the Helmholtz Lagrangian in the Einstein gauge is used to obtain the field equations in this gauge. The equilibrium hydrostatic equation is obtained and is used to study the Newtonian limit for f(R)=R−a23Rf(R)=R-\frac{a^{2}}{3R}. The same procedure is carried out for the more generally case f(R)=R−1n+2an+1Rnf(R)=R-\frac{1}{n+2}\frac{a^{n+1}}{R^{n}} giving a good Newtonian limit.Comment: Revised version, to appear in Classical and Quantum Gravity

    Vino e Ambiente: sostenibilitĂ  e qualitĂ  primaria nel sottobacino Iudeo-Bucari (TP).

    Get PDF
    In questa raccolta di scritti, vengono riportati i risultati dell’attività di ricerca realizzata con la collaborazione della cantina UVAM e dell’Istituto Regionale Vino e Olio di Sicili
    • 

    corecore