18 research outputs found

    Interleukin-15 Treatment Induces Weight Loss Independent of Lymphocytes

    Get PDF
    Obesity is a chronic inflammatory condition characterized by activation and infiltration of proinflammatory immune cells and a dysregulated production of proinflammatory cytokines. While known as a key regulator of immune natural killer (NK) cell function and development, we have recently demonstrated that reduced expression of the cytokine Interleukin-15 (IL-15) is closely linked with increased body weight and adiposity in mice and humans. Previously, we and others have shown that obese individuals have lower circulating levels of IL-15 and NK cells. Lean IL-15 overexpressing (IL-15 tg) mice had an accumulation in adipose NK cells compared to wildtype and NK cell deficient obese IL-15−/− mice. Since IL-15 induces weight loss in IL-15−/− and diet induced obese mice and has effects on various lymphocytes, the aim of this paper was to determine if lymphocytes, particularly NK cells, play a role in IL-15 mediated weight loss. Acute IL-15 treatment resulted in an increased accumulation of NK, NKT, and CD3+ T cells in adipose tissue of B6 mice. Mice depleted of NK and NKT cells had similar weight loss comparable to controls treated with IL-15. Finally, IL-15 treatment induces significant weight loss in lymphocyte deficient RAG2−/−γc−/− mice independent of food intake. Fat pad cross-sections show decreased pad size with cytokine treatment is due to adipocyte shrinkage. These results clearly suggest that IL-15 mediates weight loss independent of lymphocytes

    Magnetic resonance imaging of the erector spinae muscles in Duchenne muscular dystrophy: implication for scoliotic deformities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Duchenne muscular dystrophy (DMD), the muscular degeneration often leads to the development of scoliosis. Our objective was to investigate how anatomical changes in back muscles can lead to scoliosis. Muscular volume and the level of fat infiltration in those muscles were thus evaluated, in non-scoliotic, pre-scoliotic and scoliotic patients. The overlying skin thickness over the apex level of scoliotic deformations was also measured to facilitate the interpretation of electromyographic signals when recorded on the skin surface.</p> <p>Methods</p> <p>In 8 DMD patients and two healthy controls with no known muscular deficiencies, magnetic resonance imaging (MRI) was used to measure continuously at 3 mm intervals the distribution of the erector spinae (ES) muscle in the T8-L4 region as well as fat infiltration in the muscle and overlying skin thickness: four patients were non-scoliotic (NS), two were pre-scoliotic (PS, Cobb angle < 15°) and two were scoliotic (S, Cobb angle ≥ 15°). For each subject, 63 images 3 mm thick of the ES muscle were obtained in the T8-L4 region on both sides of the spine. The pixel dimension was 0.39 × 0.39 mm. With a commercial software, on each 12 bits image, the ES contour on the left and on the right sides of the spine were manually determined as well as those of its constituents i.e., the iliocostalis (IL), the longissimus (LO) and the spinalis (SP) muscles. Following this segmentation, the surfaces within the contours were determined, the muscles volume were obtained, the amount of fat infiltration inside each muscle was evaluated and the overlying skin thickness measured.</p> <p>Findings</p> <p>The volume of the ES muscle of our S and PS patients was found smaller on the convex side relative to the concave one by 5.3 ± 0.7% and 2.8 ± 0.2% respectively. For the 4 NS patients, the volume difference of this muscle between right and left sides was 2.1 ± 1.5% and for the 2 controls, it was 1.4 ± 1.2%. Fat infiltration for the S and the PS patients was larger on the convex side than on the concave one (4.4 ± 1.6% and 4.5 ± 0.7% respectively) and the difference was more important near the apex. Infiltration was more important in the lateral IL muscle than in the medial SP and it was always larger near L2 than at any other spinal level. Fat infiltration was much more important in the ES for the DMD patients (49.9% ± 1.6%) than for the two controls (2.6 ± 0.8%). As for the overlying skin thickness measured near the deformity of the patients, it was larger on the concave than on the convex side: 14.8 ± 6.1 vs 13.5 ± 5.7 mm for the S and 10.3 ± 6.3 vs 9.8 ± 5.6 mm for the PS.</p> <p>Interpretation</p> <p>In DMD patients, our results indicate that a larger replacement of muscles fibers by fat infiltration on one side of the spine is a factor that can lead to the development of scoliosis. Efforts to slow such an infiltration on the most affected side of the spine could thus be beneficial to those patients by delaying the apparition of the scoliotic deformation. In addition to anatomical considerations, results obtained from the same patients but in experiments dealing with electromyography recordings, point to differences in the muscular contraction mechanisms and/or of the neural input to back muscles. This is similar to the adolescent idiopathic scoliosis (AIS) where a role of the nervous system in the development of the deformation has also been suggested.</p
    corecore