1,272 research outputs found

    A Hebbian approach to complex network generation

    Full text link
    Through a redefinition of patterns in an Hopfield-like model, we introduce and develop an approach to model discrete systems made up of many, interacting components with inner degrees of freedom. Our approach clarifies the intrinsic connection between the kind of interactions among components and the emergent topology describing the system itself; also, it allows to effectively address the statistical mechanics on the resulting networks. Indeed, a wide class of analytically treatable, weighted random graphs with a tunable level of correlation can be recovered and controlled. We especially focus on the case of imitative couplings among components endowed with similar patterns (i.e. attributes), which, as we show, naturally and without any a-priori assumption, gives rise to small-world effects. We also solve the thermodynamics (at a replica symmetric level) by extending the double stochastic stability technique: free energy, self consistency relations and fluctuation analysis for a picture of criticality are obtained

    Diabolical points in the magnetic spectrum of Fe_8 molecules

    Full text link
    The magnetic molecule Fe_8 has been predicted and observed to have a rich pattern of degeneracies in its spectrum as an external magnetic field is varied. These degeneracies have now been recognized to be diabolical points. This paper analyzes the diabolicity and all essential properties of this system using elementary perturbation theory. A variety of arguments is gievn to suggest that an earlier semiclassical result for a subset of these points may be exactly true for arbitrary spinComment: uses europhys.sty package; 3 embedded ps figure

    Ferromagnetic models for cooperative behavior: Revisiting Universality in complex phenomena

    Full text link
    Ferromagnetic models are harmonic oscillators in statistical mechanics. Beyond their original scope in tackling phase transition and symmetry breaking in theoretical physics, they are nowadays experiencing a renewal applicative interest as they capture the main features of disparate complex phenomena, whose quantitative investigation in the past were forbidden due to data lacking. After a streamlined introduction to these models, suitably embedded on random graphs, aim of the present paper is to show their importance in a plethora of widespread research fields, so to highlight the unifying framework reached by using statistical mechanics as a tool for their investigation. Specifically we will deal with examples stemmed from sociology, chemistry, cybernetics (electronics) and biology (immunology).Comment: Contributing to the proceedings of the Conference "Mathematical models and methods for Planet Heart", INdAM, Rome 201

    A linear Stark shift in dressed atoms as a signal to measure a nuclear anapole moment with a cold atom fountain or interferometer

    Get PDF
    We demonstrate theoretically the existence of a linear dc Stark shift of the individual substates of an alkali atom in its ground state, dressed by a circularly polarized laser field. It arises from the electroweak nuclear anapole moment violating P but not T. It is characterized by the pseudoscalar equal to the mixed product formed with the photon angular momentum and static electric and magnetic fields. We derive the relevant left-right asymmetry with its complete signature in a field configuration selected for a precision measurement with cold atom beams. The 3,3 to 4,3 Cs hyperfine-transition frequency shift amounts to 7 ÎĽ\muHz for a laser power of about 1 kW at 877 nm, E=100 kV/cm and B larger than 0.5 G.Comment: Article, 4 pages, 2 figure

    Large transverse field tunnel splittings in the Fe_8 spin Hamiltonian

    Full text link
    The spin Hamiltonian that describes the molecular magnet Fe8_8 has biaxial symmetry with mutually perpendicular easy, medium, and hard magnetic axes. Previous calculations of the ground state tunnel splittings in the presence of a magnetic field along the hard axis are extended, and the meaning of the previously discovered oscillation of this splitting is further clarified

    Conformal Dynamics of Precursors to Fracture

    Full text link
    An exact integro-differential equation for the conformal map from the unit circle to the boundary of an evolving cavity in a stressed 2-dimensional solid is derived. This equation provides an accurate description of the dynamics of precursors to fracture when surface diffusion is important. The solution predicts the creation of sharp grooves that eventually lead to material failure via rapid fracture. Solutions of the new equation are demonstrated for the dynamics of an elliptical cavity and the stability of a circular cavity under biaxial stress, including the effects of surface stress.Comment: 4 pages, 3 figure

    Equilibrium statistical mechanics on correlated random graphs

    Full text link
    Biological and social networks have recently attracted enormous attention between physicists. Among several, two main aspects may be stressed: A non trivial topology of the graph describing the mutual interactions between agents exists and/or, typically, such interactions are essentially (weighted) imitative. Despite such aspects are widely accepted and empirically confirmed, the schemes currently exploited in order to generate the expected topology are based on a-priori assumptions and in most cases still implement constant intensities for links. Here we propose a simple shift in the definition of patterns in an Hopfield model to convert frustration into dilution: By varying the bias of the pattern distribution, the network topology -which is generated by the reciprocal affinities among agents - crosses various well known regimes (fully connected, linearly diverging connectivity, extreme dilution scenario, no network), coupled with small world properties, which, in this context, are emergent and no longer imposed a-priori. The model is investigated at first focusing on these topological properties of the emergent network, then its thermodynamics is analytically solved (at a replica symmetric level) by extending the double stochastic stability technique, and presented together with its fluctuation theory for a picture of criticality. At least at equilibrium, dilution simply decreases the strength of the coupling felt by the spins, but leaves the paramagnetic/ferromagnetic flavors unchanged. The main difference with respect to previous investigations and a naive picture is that within our approach replicas do not appear: instead of (multi)-overlaps as order parameters, we introduce a class of magnetizations on all the possible sub-graphs belonging to the main one investigated: As a consequence, for these objects a closure for a self-consistent relation is achieved.Comment: 30 pages, 4 figure

    Analogue neural networks on correlated random graphs

    Full text link
    We consider a generalization of the Hopfield model, where the entries of patterns are Gaussian and diluted. We focus on the high-storage regime and we investigate analytically the topological properties of the emergent network, as well as the thermodynamic properties of the model. We find that, by properly tuning the dilution in the pattern entries, the network can recover different topological regimes characterized by peculiar scalings of the average coordination number with respect to the system size. The structure is also shown to exhibit a large degree of cliquishness, even when very sparse. Moreover, we obtain explicitly the replica symmetric free energy and the self-consistency equations for the overlaps (order parameters of the theory), which turn out to be classical weighted sums of 'sub-overlaps' defined on all possible sub-graphs. Finally, a study of criticality is performed through a small-overlap expansion of the self-consistencies and through a whole fluctuation theory developed for their rescaled correlations: Both approaches show that the net effect of dilution in pattern entries is to rescale the critical noise level at which ergodicity breaks down.Comment: 34 pages, 3 figure
    • …
    corecore