697 research outputs found
Oscillating elastic defects: competition and frustration
We consider a dynamical generalization of the Eshelby problem: the strain
profile due to an inclusion or "defect" in an isotropic elastic medium. We show
that the higher the oscillation frequency of the defect, the more localized is
the strain field around the defect. We then demonstrate that the qualitative
nature of the interaction between two defects is strongly dependent on
separation, frequency and direction, changing from "ferromagnetic" to
"antiferromagnetic" like behavior. We generalize to a finite density of defects
and show that the interactions in assemblies of defects can be mapped to XY
spin-like models, and describe implications for frustration and
frequency-driven pattern transitions.Comment: 4 pages, 5 figure
Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems
Classical spin systems with nonadditive long-range interactions are studied
in the microcanonical ensemble. It is expected that the entropy of such a
system is identical to that of the corresponding mean-field model, which is
called "exactness of the mean-field theory". It is found out that this
expectation is not necessarily true if the microcanonical ensemble is not
equivalent to the canonical ensemble in the mean-field model. Moreover,
necessary and sufficient conditions for exactness of the mean-field theory are
obtained. These conditions are investigated for two concrete models, the
\alpha-Potts model with annealed vacancies and the \alpha-Potts model with
invisible states.Comment: 23 pages, to appear in J. Stat. Phy
Ensemble Inequivalence in Mean-field Models of Magnetism
Mean-field models, while they can be cast into an {\it extensive}
thermodynamic formalism, are inherently {\it non additive}. This is the basic
feature which leads to {\it ensemble inequivalence} in these models. In this
paper we study the global phase diagram of the infinite range
Blume-Emery-Griffiths model both in the {\it canonical} and in the {\it
microcanonical} ensembles. The microcanonical solution is obtained both by
direct state counting and by the application of large deviation theory. The
canonical phase diagram has first order and continuous transition lines
separated by a tricritical point. We find that below the tricritical point,
when the canonical transition is first order, the phase diagrams of the two
ensembles disagree. In this region the microcanonical ensemble exhibits energy
ranges with negative specific heat and temperature jumps at transition
energies. These two features are discussed in a general context and the
appropriate Maxwell constructions are introduced. Some preliminary extensions
of these results to weakly decaying nonintegrable interactions are presented.Comment: Chapter of the forthcoming "Lecture Notes in Physics" volume:
``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T.
Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics
Vol. 602, Springer (2002). (see http://link.springer.de/series/lnpp/
Large deviation techniques applied to systems with long-range interactions
We discuss a method to solve models with long-range interactions in the
microcanonical and canonical ensemble. The method closely follows the one
introduced by Ellis, Physica D 133, 106 (1999), which uses large deviation
techniques. We show how it can be adapted to obtain the solution of a large
class of simple models, which can show ensemble inequivalence. The model
Hamiltonian can have both discrete (Ising, Potts) and continuous (HMF, Free
Electron Laser) state variables. This latter extension gives access to the
comparison with dynamics and to the study of non-equilibri um effects. We treat
both infinite range and slowly decreasing interactions and, in particular, we
present the solution of the alpha-Ising model in one-dimension with
Ensemble inequivalence in systems with long-range interactions
Ensemble inequivalence has been observed in several systems. In particular it
has been recently shown that negative specific heat can arise in the
microcanonical ensemble in the thermodynamic limit for systems with long-range
interactions. We display a connection between such behaviour and a mean-field
like structure of the partition function. Since short-range models cannot
display this kind of behaviour, this strongly suggests that such systems are
necessarily non-mean field in the sense indicated here. We illustrate our
results showing an application to the Blume-Emery-Griffiths model. We further
show that a broad class of systems with non-integrable interactions are indeed
of mean-field type in the sense specified, so that they are expected to display
ensemble inequivalence as well as the peculiar behaviour described above in the
microcanonical ensemble.Comment: 12 pages, no figure
Lyapunov exponents as a dynamical indicator of a phase transition
We study analytically the behavior of the largest Lyapunov exponent
for a one-dimensional chain of coupled nonlinear oscillators, by
combining the transfer integral method and a Riemannian geometry approach. We
apply the results to a simple model, proposed for the DNA denaturation, which
emphasizes a first order-like or second order phase transition depending on the
ratio of two length scales: this is an excellent model to characterize
as a dynamical indicator close to a phase transition.Comment: 8 Pages, 3 Figure
Phase transitions of quasistationary states in the Hamiltonian Mean Field model
The out-of-equilibrium dynamics of the Hamiltonian Mean Field (HMF) model is
studied in presence of an externally imposed magnetic field h. Lynden-Bell's
theory of violent relaxation is revisited and shown to adequately capture the
system dynamics, as revealed by direct Vlasov based numerical simulations in
the limit of vanishing field. This includes the existence of an
out-of-equilibrium phase transition separating magnetized and non magnetized
phases. We also monitor the fluctuations in time of the magnetization, which
allows us to elaborate on the choice of the correct order parameter when
challenging the performance of Lynden-Bell's theory. The presence of the field
h removes the phase transition, as it happens at equilibrium. Moreover, regions
with negative susceptibility are numerically found to occur, in agreement with
the predictions of the theory.Comment: 6 pages, 7 figure
Improved optical phenotyping of the grape berry surface using light-separation and automated RGB image analysis
Grape resilience towards Botrytis cinerea (B. cinerea) infections (Botrytis bunch rot) is an important concern of breeders and growers. Beside grape bunch architecture, berry surface characteristics like berry bloom (epicuticular wax) as well as thickness and permeability of the berry cuticle represent further promising physical barriers to increase resilience towards Botrytis bunch rot. In previous studies, two efficient sensor-based phenotyping methods were developed to evaluate both berry surface traits fast and objectively: (1) light-separated RGB (red-green-blue) image analysis to determine the distribution of epicuticular wax on the berry surface; and (2) electrical impedance characteristics of the grape berry cuticle based on point measurements. The present proof-of-concept study aiming at the evaluation of light-separated RGB images for both phenotyping applications, phenotyping wax distribution pattern and berry cuticle impedance values. Within the selected grapevine varieties like 'Riesling', 'Sauvignon Blanc' or 'Calardis Blanc' five contributions were achieved: (1) Both phenotyping approaches were fused into one prototypic unified phenotyping method achieving a wax detection accuracy of 98.6 % and a prediction of electrical impedance with an accuracy of 95Â %. (2)Â Both traits are derived using only light-separated images of the grapevine berries. (3) The improved method allows the detection and quantification of additional surface traits of the grape berry surface such as lenticels (punctual lignification) and the berry stem that are also known as being able to affect the grape susceptibility towards Botrytis. (4) The improved image analysis tools are further integrated into a comprehensive workbench allowing end-users, like breeders to combine phenotyping experiments with transparent data management offering valuable services like visualizations, indexing, etc. (5) Annotation work is supported by a sophisticated annotation tool of the image analysis workbench. The usage of light-separated images enables fast and non-invasive phenotyping of different optical berry surface characteristics, which saves time-consuming labor and additionally allows the reuse of the berry samples for subsequent investigations, e.g. Botrytis infection studies
- …