369 research outputs found

    Time-reversal violating rotation of polarization plane of light in gas placed in electric field

    Get PDF
    Rotation of polarization plane of light in gas placed in electric field is considered. Different factors causing this phenomenon are investigated. Angle of polarization plane rotation for transition 6S_{1/2} - 7S_{1/2} in cesium (lambda=539 nm) is estimated. The possibility to observe this effect experimentally is discussed.Comment: 10 pages, Late

    Enhancement factor for the electron electric dipole moment in francium and gold atoms

    Get PDF
    If electrons had an electric dipole moment (EDM) they would induce EDMs of atoms. The ratio of the atomic EDM to the electron EDM for a particular atom is called the enhancement factor, R. We calculate the enhancement factor for the francium and gold atoms, with the results 910 plus/minus 5% for Fr and 260 plus/minus 15% for Au. The large values of these enhancement factors make these atoms attractive for electron EDM measurements, and hence the search for time-reversal invariance violation.Comment: 6 pages, no figures, uses RevTex, reference adde

    Theta angle versus CP violation in the leptonic sector

    Get PDF
    Assuming that the axion mechanism of solving the strong CP problem does not exist and the vanishing of theta at tree level is achieved by some model-building means, we study the naturalness of having large CP-violating sources in the leptonic sector. We consider the radiative mechanisms which transfer a possibly large CP-violating phase in the leptonic sector to the theta parameter. It is found that large theta cannot be induced in the models with one Higgs doublet as at least three loops are required in this case. In the models with two or more Higgs doublets the dominant source of theta is the phases in the scalar potential, induced by CP violation in leptonic sector. Thus, in the MSSM framework the imaginary part of the trilinear soft-breaking parameter A_l generates the corrections to the theta angle already at one loop. These corrections are large, excluding the possibility of large phases, unless the universality in the slepton sector is strongly violated.Comment: 5 pages, 2 figure

    Missing for 20 yr: MeerKAT Redetects the Elusive Binary Pulsar M30B

    Get PDF
    PSR J2140−2311B is a 13 ms pulsar discovered in 2001 in a 7.8 hr Green Bank Telescope observation of the core-collapsed globular cluster M30 and predicted to be in a highly eccentric binary orbit. This pulsar has eluded detection since then; therefore, its precise orbital parameters have remained a mystery until now. In this work, we present the confirmation of this pulsar using observations taken with the UHF receivers of the MeerKAT telescope as part of the TRAPUM Large Survey Project. Taking advantage of the beamforming capability of our backends, we have localized it, placing it 1.â€Č2(1) from the cluster center. Our observations have enabled the determination of its orbit: It is highly eccentric (e = 0.879) with an orbital period of 6.2 days. We also measured the rate of periastron advance, ω ̇ = 0.078 ± 0.002 deg yr − 1 . Assuming that this effect is fully relativistic, general relativity provides an estimate of the total mass of the system, M TOT = 2.53 ± 0.08 M ⊙, consistent with the lightest double neutron star systems known. Combining this with the mass function of the system gives the pulsar and companion masses of m p 1.10 M ⊙, respectively. The massive, undetected companion could either be a massive white dwarf or a neutron star. M30B likely formed as a result of a secondary exchange encounter. Future timing observations will allow the determination of a phase-coherent timing solution, vastly improving our uncertainty in ω ̇ and likely enabling the detection of additional relativistic effects, which will determine m p and m

    The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview

    Get PDF
    We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. This work was performed on the gSTAR national facility at Swinburne University of Technology. gSTAR is funded by Swinburne and the Australian Government’s Education Investment Fund. EP receives funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 617199. The work of MK and RPE is supported by the ERC Synergy Grant ‘BlackHoleCam: Imaging the Event Horizon of Black Holes’ (Grant 610058)

    The SUrvey for Pulsars and Extragalactic Radio Bursts - II. New FRB discoveries and their follow-up

    Get PDF
    We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time-scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cut-off, and FRB 160102 has the highest dispersion measure (DM = 2596.1 ± 0.3 pc cm-3) detected to date. Three of the FRBs have high dispersion measures (DM>1500 pc cm-3), favouring a scenario where theDMis dominated by contributions from the intergalactic medium. The slope of the Parkes FRB source counts distribution with fluences >2 Jyms is α = -2.2+0.6 -1.2 and still consistent with a Euclidean distribution (α = -3/2). We also find that the all-sky rate is 1.7+1.5 -0.9 × 103FRBs/(4π sr)/day above ~2 Jy ms and there is currently no strong evidence for a latitude-dependent FRB sky rate

    Muon anomalous magnetic moment in the standard model with two Higgs doublets

    Get PDF
    The muon anomalous magnetic moment is investigated in the standard model with two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all the effective Yukawa couplings become complex. As a consequence of the non-zero phase in the couplings, the one loop contribution from the neutral scalar bosons could be positive and negative relying on the CP phases. The interference between one and two loop diagrams can be constructive in a large parameter space of CP-phases. This will result in a significant contribution to muon anomalous magnetic moment even in the flavor conserving process with a heavy neutral scalar boson (mh∌m_h \sim 200 GeV) once the effective muon Yukawa coupling is large (âˆŁÎŸÎŒâˆŁâˆŒ50|\xi_\mu|\sim 50). In general, the one loop contributions from lepton flavor changing scalar interactions become more important. In particular, when all contributions are positive in a reasonable parameter space of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation can be easily explained even for a heavy scalar boson with a relative small Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54 (2001) 11501
    • 

    corecore