4,567 research outputs found

    Inclusive neutrino scattering off deuteron at low energies in chiral effective field theory

    Get PDF
    Cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. Contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range (0--150) MeV. The cutoff dependence is negligible, and the predicted cross sections are within 2\sim 2\% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchange frameworks.Comment: 16 pages, 10 figures, edits made to the text and added two figures, as suggested by Referee. References adde

    Noise-driven Synchronization in Coupled Map Lattices

    Full text link
    Synchronization is shown to occur in spatially extended systems under the effect of additive spatio-temporal noise. In analogy to low dimensional systems, synchronized states are observable only if the maximum Lyapunov exponent Λ\Lambda is negative. However, a sufficiently high noise level can lead, in map with finite domain of definition, to nonlinear propagation of information, even in non chaotic systems. In this latter case the transition to synchronization is ruled by a new ingredient : the propagation velocity of information VFV_F. As a general statement, we can affirm that if VFV_F is finite the time needed to achieve a synchronized trajectory grows exponentially with the system size LL, while it increases logarithmically with LL when, for sufficiently large noise amplitude, VF=0V_F = 0 .Comment: 11 pages, Latex - 6 EPS Figs - Proceeding LSD 98 (Marseille

    On-surface and Subsurface Adsorption of Oxygen on Stepped Ag(210) and Ag(410) Surfaces

    Full text link
    The adsorption of atomic oxygen and its inclusion into subsurface sites on Ag(210) and Ag(410) surfaces have been investigated using density functional theory. We find that--in the absence of adatoms on the first metal layer--subsurface adsorption results in strong lattice distortion which makes it energetically unfavoured. However subsurface sites are significantly stabilised when a sufficient amount of O adatoms is present on the surface. At high enough O coverage on the Ag(210) surface the mixed on-surface + subsurface O adsorption is energetically favoured with respect to the on-surface only adsorption. Instead, on the Ag(410) surface, at the coverage we have considered (3/8 ML), the existence of stable terrace sites makes the subsurface O incorporation less favourable. These findings are compatible with the results of recent HREEL experiments which have actually motivated this work.Comment: 8 pages, 4 figures and 1 tabl

    Two-spin entanglement distribution near factorized states

    Get PDF
    We study the two-spin entanglement distribution along the infinite S=1/2S=1/2 chain described by the XY model in a transverse field; closed analytical expressions are derived for the one-tangle and the concurrences CrC_r, rr being the distance between the two possibly entangled spins, for values of the Hamiltonian parameters close to those corresponding to factorized ground states. The total amount of entanglement, the fraction of such entanglement which is stored in pairwise entanglement, and the way such fraction distributes along the chain is discussed, with attention focused on the dependence on the anisotropy of the exchange interaction. Near factorization a characteristic length-scale naturally emerges in the system, which is specifically related with entanglement properties and diverges at the critical point of the fully isotropic model. In general, we find that anisotropy rule a complex behavior of the entanglement properties, which results in the fact that more isotropic models, despite being characterized by a larger amount of total entanglement, present a smaller fraction of pairwise entanglement: the latter, in turn, is more evenly distributed along the chain, to the extent that, in the fully isotropic model at the critical field, the concurrences do not depend on rr.Comment: 14 pages, 6 figures. Final versio

    Tritium β\beta-decay in chiral effective field theory

    Get PDF
    We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritium β\beta-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory (χ\chi EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schrodinger equation with two- and three-nucleon potentials corresponding to either χ\chi EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. We also provide values for the low-energy constants multiplying the contact axial current and three-nucleon potential, required to reproduce the experimental GT matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX calculations.Comment: 19 pages,6 figures, corrections to Text as suggested by Referee added; Erratum: 4 pages, 3 figures, corrections to Eq.(20), Tables I, II, III, Figures 4, 5, conclusions unchange

    A chiral effective field theory study of hadronic parity violation in few-nucleon systems

    Get PDF
    We reconsider the derivation of the nucleon-nucleon parity-violating (PV) potential within a chiral effective field theory framework. We construct the potential up to next-to-next-to-leading order by including one-pion-exchange, two-pion-exchange, contact, and 1/M (M being the nucleon mass) terms, and use dimensional regularization to renormalize the pion-loop corrections. A detailed analysis of the number of independent low-energy constants (LEC's) entering the potential is carried out. We find that it depends on six LEC's: the pion-nucleon PV coupling constant hπ1h^1_\pi and five parameters multiplying contact interactions. We investigate PV effects induced by this potential on several few-nucleon observables, including the p\vec{p}-pp longitudinal asymmetry, the neutron spin rotation in n\vec{n}-pp and n\vec{n}-dd scattering, and the longitudinal asymmetry in the 3^3He(n,p)3(\vec{n},p)^3H charge-exchange reaction. An estimate for the range of values of the various LEC's is provided by using available experimental data.Comment: 31 pages, 7 figures, submitted to Physical Review

    Socialisations langagières, tension identitaires et investissement

    Get PDF
    This study aims to explore the relationships that can be established between identity tensions affecting a learner of French in an alloglotte context, its investment in the appropriation of the language and the contacts that can be established with the target language, the latter constituting a necessary mediation for a successful appropria tion. The empirical analysis is based on data concerning an Austrian living in French-speaking Switzerland and taking courses in an academic context

    Finite-volume matrix elements of two-body states

    Get PDF
    In this talk, we present a framework for studying structural information of resonances and bound states coupling to two-hadron scattering states. This makes use of a recently proposed finite-volume formalism to determine a class of observables that are experimentally inaccessible but can be accessed via lattice QCD. In particular, we shown that finite-volume two-body matrix elements with one current insertion can be directly related to scattering amplitudes coupling to the external current. For two-hadron systems with resonances or bound states, one can extract the corresponding form factors of these from the energy-dependence of the amplitudes.Comment: 7 pages, 2 figures, Proceedings of Lattice 201

    Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures

    Full text link
    Quadratic-response theory is shown to provide a conceptually simple but accurate approximation for the self-consistent one-electron potential of semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs and InGaAs/InP (001) superlattices using the local-density approximation to density-functional theory and norm-conserving pseudopotentials without spin-orbit coupling. When the reference crystal is chosen to be the virtual-crystal average of the two bulk constituents, the absolute error in the quadratic-response potential for Gamma(15) valence electrons is about 2 meV for GaAs/AlAs and 5 meV for InGaAs/InP. Low-order multipole expansions of the electron density and potential response are shown to be accurate throughout a small neighborhood of each reciprocal lattice vector, thus providing a further simplification that is confirmed to be valid for slowly varying envelope functions. Although the linear response is about an order of magnitude larger than the quadratic response, the quadratic terms are important both quantitatively (if an accuracy of better than a few tens of meV is desired) and qualitatively (due to their different symmetry and long-range dipole effects).Comment: 16 pages, 20 figures; v2: new section on limitations of theor

    Inclusive Neutrino Scattering Off the Deuteron at Low Energies in Chiral Effective Field Theory

    Get PDF
    Cross sections for inclusive neutrino scattering off the deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. Contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range 0–150 MeV. The cutoff dependence is negligible, and the predicted cross sections are within ∼2% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchange frameworks
    corecore