5 research outputs found

    Microscopic activity patterns in the Naming Game

    Get PDF
    The models of statistical physics used to study collective phenomena in some interdisciplinary contexts, such as social dynamics and opinion spreading, do not consider the effects of the memory on individual decision processes. On the contrary, in the Naming Game, a recently proposed model of Language formation, each agent chooses a particular state, or opinion, by means of a memory-based negotiation process, during which a variable number of states is collected and kept in memory. In this perspective, the statistical features of the number of states collected by the agents becomes a relevant quantity to understand the dynamics of the model, and the influence of topological properties on memory-based models. By means of a master equation approach, we analyze the internal agent dynamics of Naming Game in populations embedded on networks, finding that it strongly depends on very general topological properties of the system (e.g. average and fluctuations of the degree). However, the influence of topological properties on the microscopic individual dynamics is a general phenomenon that should characterize all those social interactions that can be modeled by memory-based negotiation processes.Comment: submitted to J. Phys.

    Agreement dynamics on small-world networks

    Get PDF
    In this paper we analyze the effect of a non-trivial topology on the dynamics of the so-called Naming Game, a recently introduced model which addresses the issue of how shared conventions emerge spontaneously in a population of agents. We consider in particular the small-world topology and study the convergence towards the global agreement as a function of the population size N as well as of the parameter p which sets the rate of rewiring leading to the small-world network. As long as p > > 1/N, there exists a crossover time scaling as N/p2 which separates an early one-dimensional–like dynamics from a late-stage mean-field–like behavior. At the beginning of the process, the local quasi–one-dimensional topology induces a coarsening dynamics which allows for a minimization of the cognitive effort (memory) required to the agents. In the late stages, on the other hand, the mean-field–like topology leads to a speed-up of the convergence process with respect to the one-dimensional case
    corecore