2 research outputs found
Dictionary-based methods for information extraction
In this paper, we present a general method for information extraction that exploits the features of data compression techniques. We first define and focus our attention on the so-called dictionary of a sequence. Dictionaries are intrinsically interesting and a study of their features can be of great usefulness to investigate the properties of the sequences they have been extracted from e.g. DNA strings. We then describe a procedure of string comparison between dictionary-created sequences (or artificial texts) that gives very good results in several contexts. We finally present some results on self-consistent classification problems
Artificial Sequences and Complexity Measures
In this paper we exploit concepts of information theory to address the
fundamental problem of identifying and defining the most suitable tools to
extract, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a
crucial way data compression techniques in order to define a measure of
remoteness and distance between pairs of sequences of characters (e.g. texts)
based on their relative information content. We also discuss in detail how
specific features of data compression techniques could be used to introduce the
notion of dictionary of a given sequence and of Artificial Text and we show how
these new tools can be used for information extraction purposes. We point out
the versatility and generality of our method that applies to any kind of
corpora of character strings independently of the type of coding behind them.
We consider as a case study linguistic motivated problems and we present
results for automatic language recognition, authorship attribution and self
consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression
approach to Information Extraction and Classification" by A. Baronchelli and
V. Loreto. 15 pages; 5 figure