172 research outputs found

    Simple modeling of self-oscillation in Nano-electro-mechanical systems

    Full text link
    We present here a simple analytical model for self-oscillations in nano-electro-mechanical systems. We show that a field emission self-oscillator can be described by a lumped electrical circuit and that this approach is generalizable to other electromechanical oscillator devices. The analytical model is supported by dynamical simulations where the electrostatic parameters are obtained by finite element computations.Comment: accepted in AP

    Disordering to Order: de Vries behavior from a Landau theory for smectics

    Get PDF
    We show that Landau theory for the isotropic, nematic, smectic A, and smectic C phases generically, but not ubiquitously, implies de Vries behavior. I.e., a continuous AC transition can occur with little layer contraction; the birefringence decreases as temperature T is lowered above this transition, and increases again below the transition. This de Vries behavior occurs in models with unusually small orientational order, and is preceded by a first order I − A transition. A first order AC transition with elements of de Vries behavior can also occur. These results correspond well with experimental work to date.Comment: 4 pages, 2 page appendi

    Modificaciones químicas inducidas por dos especies de lombrices geófagas en suelos de Veracruz, México.

    Get PDF
    Dos lombrices tropicales, una exótica (Pontoscolex corethrurus) y otra nativa (Glossoscolecidae sp.) de Veracruz, México, fueron cultivadas en condiciones de laboratorio para colectar sus respectivos turrículos (deyecciones) cada 48 horas, medir su tasa de producción y el efecto que ejercen sobre varios parámetros químicos en el suelo excretado. Ambas especies fueron cultivadas en un Lixisol (La Víbora) y P. corethrurus lo fue también en otros dos tipos de suelo, un Vertisol (Plan de las Hayas) y un Andosol (Los Tuxtlas). Los parámetros químicos medidos en los turrículos y en suelo testigo (control) fueron los siguientes: pH, C, N, C/N, NO3, NH4, Na, K, Ca, Mg, CIC, P-asimilable, P-Total, P-Resinas, Al, Fe, Cu, Zn, Mn. Para P. corethrurus la producción de turrículos superficiales fue más alta en los suelos con menor contenido de MO. En el Lixisol, Glossoscolecidae sp. produjo menor cantidad de turrículos comparada con P. corethrurus, pero promovió una disponibilidad mayor, especialmente de K, Na Mg, Mn, Fe, K y NH4. Pontoscolex corethrurus promovió también la concentración de la mayor parte de los parámetros estudiados con respecto al suelo control, tanto en el Andosol como en el Vertisol; en el Lixisol, esta especie incrementó la concentración en la mitad de los parámetros. Pontoscolex corethrurus tiene una capacidad alta de adaptarse a diferentes suelos y de modificar sus características químicas, promoviendo la disponibilidad de diversos elementos esenciales para el crecimiento vegetal; eso es especialmente importante en los suelos más pobres como el Lixisol

    Large area Al₂O₃–Au raspberry-like nanoclusters from iterative block-copolymer self-assembly

    Get PDF
    In the field of functional nanomaterials, core–satellite nanoclusters have recently elicited great interest due to their unique optoelectronic properties. However, core–satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography. The fabricated inorganic raspberry nanoclusters consisted of a ∼36 nm alumina core decorated with ∼15 nm Au satellites after infusing multilayer BCP nanopatterns. A series of cylindrical BCPs with different molecular weights allowed us to dial in specific nanodot periodicities (from 30 to 80 nm). Highly ordered BCP nanopatterns were then selectively infiltrated with alumina and Au species to develop multi-level bimetallic raspberry features. Microscopy and X-ray reflectivity analysis were used at each fabrication step to gain further mechanistic insights and understand the infiltration process. Furthermore, grazing-incidence small-angle X-ray scattering studies of infiltrated films confirmed the excellent order and vertical orientation over wafer scale areas of Al2O3/Au raspberry nanoclusters. We believe our work demonstrates a robust strategy towards designing hybrid nanoclusters since BCP blocks can be infiltrated with various low cost salt-based precursors. The highly controlled nanocluster strategy disclosed here could have wide ranging uses, in particular for metasurface and optical based sensor applications

    Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators

    No full text
    International audienceWe report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation. © 2011 American Physical Society

    Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor

    Full text link
    Miniaturization of force probes into nanomechanical oscillators enables ultrasensitive investigations of forces on dimensions smaller than their characteristic length scale. Meanwhile it also unravels the force field vectorial character and how its topology impacts the measurement. Here we expose an ultrasensitive method to image 2D vectorial force fields by optomechanically following the bidimensional Brownian motion of a singly clamped nanowire. This novel approach relies on angular and spectral tomography of its quasi frequency-degenerated transverse mechanical polarizations: immersing the nanoresonator in a vectorial force field does not only shift its eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This universal method is employed to map a tunable electrostatic force field whose spatial gradients can even take precedence over the intrinsic nanowire properties. Enabling vectorial force fields imaging with demonstrated sensitivities of attonewton variations over the nanoprobe Brownian trajectory will have strong impact on scientific exploration at the nanoscale

    Earthworm management in tropical agroecosystems

    Get PDF
    Ecological and demographic parameters of 26 species of native and exotic earthworms species common in tropical agroecosystems, with large environmental tolerance and/or extended distribution were investigated. Principal component analysis (PCA) isolated four groups : (i) large native endogeic and anecic species (16-32 g individual fresh wt) with long generation time (2-4 years), low fecundity (0.5-3.1 cocoons/year/adult) and one hatchling per cocoon ; (ii) medium size species (1.2-6 g) endogeic mesohumic, with intermediate fecundity (1.3-45 cocoons/year/adult) ; (iii) small species (0.17-1.25 g f.w.) mainly endogeic polyhumic, with short generation time (3-7 months), intermediate fecundity (10-68 cocoons/year/adult) and one hatchling per cocoon ; and (iv) generally small (80-150 mg f.w.) species mainly exotic and epigeic, with short generation time (1-3 months), very high fecundity (50-350 cocoons/year/adult) and up to three hatchlings per cocoon. Casts may be either large globular or small granular. The selective investigations of large organic particles and small mineral particles (clays) concentrates total organic matter in the casts. There is an intense mineralization rate of nitrogen in the casts (6-29% of organic N), exotic worms seeming to be less efficient than natives at mineralizing N. The mineral phosphorus content of casts is always at least 30% higher than in the non-ingested soil. All these worms ingest daily, on average, three times their own weight of soil at the adult stage (1-9) and much more when juvenile ; up to 1000 Mg dry soil/ha may transit yearly through earthworm guts. (Résumé d'auteur

    Steering self-organisation through confinement

    Get PDF
    Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units’ translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter
    corecore