16 research outputs found

    Three-dimensionality of space and the quantum bit: an information-theoretic approach

    Full text link
    It is sometimes pointed out as a curiosity that the state space of quantum two-level systems, i.e. the qubit, and actual physical space are both three-dimensional and Euclidean. In this paper, we suggest an information-theoretic analysis of this relationship, by proving a particular mathematical result: suppose that physics takes place in d spatial dimensions, and that some events happen probabilistically (not assuming quantum theory in any way). Furthermore, suppose there are systems that carry "minimal amounts of direction information", interacting via some continuous reversible time evolution. We prove that this uniquely determines spatial dimension d=3 and quantum theory on two qubits (including entanglement and unitary time evolution), and that it allows observers to infer local spatial geometry from probability measurements.Comment: 13 + 22 pages, 9 figures. v4: some clarifications, in particular in Section V / Appendix C (added Example 39

    Generalization of entanglement to convex operational theories: Entanglement relative to a subspace of observables

    Full text link
    We define what it means for a state in a convex cone of states on a space of observables to be generalized-entangled relative to a subspace of the observables, in a general ordered linear spaces framework for operational theories. This extends the notion of ordinary entanglement in quantum information theory to a much more general framework. Some important special cases are described, in which the distinguished observables are subspaces of the observables of a quantum system, leading to results like the identification of generalized unentangled states with Lie-group-theoretic coherent states when the special observables form an irreducibly represented Lie algebra. Some open problems, including that of generalizing the semigroup of local operations with classical communication to the convex cones setting, are discussed.Comment: 19 pages, to appear in proceedings of Quantum Structures VII, Int. J. Theor. Phy

    Quartic quantum theory: an extension of the standard quantum mechanics

    Full text link
    We propose an extended quantum theory, in which the number K of parameters necessary to characterize a quantum state behaves as fourth power of the number N of distinguishable states. As the simplex of classical N-point probability distributions can be embedded inside a higher dimensional convex body of mixed quantum states, one can further increase the dimensionality constructing the set of extended quantum states. The embedding proposed corresponds to an assumption that the physical system described in N dimensional Hilbert space is coupled with an auxiliary subsystem of the same dimensionality. The extended theory works for simple quantum systems and is shown to be a non-trivial generalisation of the standard quantum theory for which K=N^2. Imposing certain restrictions on initial conditions and dynamics allowed in the quartic theory one obtains quadratic theory as a special case. By imposing even stronger constraints one arrives at the classical theory, for which K=N.Comment: 30 pages in latex with 6 figures included; ver.2: several improvements, new references adde

    Local randomness in Hardy's correlations: Implications from information causality principle

    Full text link
    Study of nonlocal correlations in term of Hardy's argument has been quite popular in quantum mechanics. Recently Hardy's argument of non-locality has been studied in the context of generalized non-signaling theory as well as theory respecting information causality. Information causality condition significantly reduces the success probability for Hardy's argument when compared to the result based on non-signaling condition. Here motivated by the fact that maximally entangled state in quantum mechanics does not exhibit Hardy's non-local correlation, we do a qualitative study of the property of local randomness of measured observable on each side reproducing Hardy's non-locality correlation,in the context of information causality condition. On applying the necessary condition for respecting the principle of information causality, we find that there are severe restrictions on the local randomness of measured observable in contrast to results obtained from no-signaling condition.Still, there are some restrictions imposed by quantum mechanics that are not obtained from information causality condition.Comment: 6 pages, 2 tables, new references adde

    A derivation of quantum theory from physical requirements

    Full text link
    Quantum theory is usually formulated in terms of abstract mathematical postulates, involving Hilbert spaces, state vectors, and unitary operators. In this work, we show that the full formalism of quantum theory can instead be derived from five simple physical requirements, based on elementary assumptions about preparation, transformations and measurements. This is more similar to the usual formulation of special relativity, where two simple physical requirements -- the principles of relativity and light speed invariance -- are used to derive the mathematical structure of Minkowski space-time. Our derivation provides insights into the physical origin of the structure of quantum state spaces (including a group-theoretic explanation of the Bloch ball and its three-dimensionality), and it suggests several natural possibilities to construct consistent modifications of quantum theory.Comment: 16 pages, 2 figures. V3: added alternative formulation of Requirement 5, extended abstract, some minor modification

    Generalizations of entanglement based on coherent states and convex sets

    Full text link
    Unentangled pure states on a bipartite system are exactly the coherent states with respect to the group of local transformations. What aspects of the study of entanglement are applicable to generalized coherent states? Conversely, what can be learned about entanglement from the well-studied theory of coherent states? With these questions in mind, we characterize unentangled pure states as extremal states when considered as linear functionals on the local Lie algebra. As a result, a relativized notion of purity emerges, showing that there is a close relationship between purity, coherence and (non-)entanglement. To a large extent, these concepts can be defined and studied in the even more general setting of convex cones of states. Based on the idea that entanglement is relative, we suggest considering these notions in the context of partially ordered families of Lie algebras or convex cones, such as those that arise naturally for multipartite systems. The study of entanglement includes notions of local operations and, for information-theoretic purposes, entanglement measures and ways of scaling systems to enable asymptotic developments. We propose ways in which these may be generalized to the Lie-algebraic setting, and to a lesser extent to the convex-cones setting. One of our original motivations for this program is to understand the role of entanglement-like concepts in condensed matter. We discuss how our work provides tools for analyzing the correlations involved in quantum phase transitions and other aspects of condensed-matter systems.Comment: 37 page
    corecore