722 research outputs found

    Local Quantum Measurement and No-Signaling Imply Quantum Correlations

    Get PDF
    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.Comment: Published version. 5 pages, 1 figure

    Discord and non-classicality in probabilistic theories

    Full text link
    Quantum discord quantifies non-classical correlations in quantum states. We introduce discord for states in causal probabilistic theories, inspired by the original definition proposed in Ref. [17]. We show that the only probabilistic theory in which all states have null discord is classical probability theory. Non-null discord is then not just a quantum feature, but a generic signature of non-classicality.Comment: 5 pages, revtex styl

    A violation of the uncertainty principle implies a violation of the second law of thermodynamics

    Full text link
    Uncertainty relations state that there exist certain incompatible measurements, to which the outcomes cannot be simultaneously predicted. While the exact incompatibility of quantum measurements dictated by such uncertainty relations can be inferred from the mathematical formalism of quantum theory, the question remains whether there is any more fundamental reason for the uncertainty relations to have this exact form. What, if any, would be the operational consequences if we were able to go beyond any of these uncertainty relations? We give a strong argument that justifies uncertainty relations in quantum theory by showing that violating them implies that it is also possible to violate the second law of thermodynamics. More precisely, we show that violating the uncertainty relations in quantum mechanics leads to a thermodynamic cycle with positive net work gain, which is very unlikely to exist in nature.Comment: 8 pages, revte

    Report of Cost Committee of American Boiler Manufacturers Association

    Get PDF
    It is safe to say that boiler manufacturers as a whole have been more backward in the development of their financial accounting and cost accounting than they have in the development of greater efficiency in their plants; they have looked upon cost accounting as something to do with red tape or something that may be all right for the other fellow. It is our conclusion that the interests of the Association can best be served and the work of our Committee productive of most good, through the distribution of this booklet which we might consider as a primer on cost accounting for our industry, and to this end we present it with the hope that it will be given your careful consideration. In this booklet we will endeavor to outline in a simple manner, a procedure that if followed will make it possible for any manufacturer, large or small, to compute his cost of production with a reasonable degree of accuracy

    Generalization of entanglement to convex operational theories: Entanglement relative to a subspace of observables

    Full text link
    We define what it means for a state in a convex cone of states on a space of observables to be generalized-entangled relative to a subspace of the observables, in a general ordered linear spaces framework for operational theories. This extends the notion of ordinary entanglement in quantum information theory to a much more general framework. Some important special cases are described, in which the distinguished observables are subspaces of the observables of a quantum system, leading to results like the identification of generalized unentangled states with Lie-group-theoretic coherent states when the special observables form an irreducibly represented Lie algebra. Some open problems, including that of generalizing the semigroup of local operations with classical communication to the convex cones setting, are discussed.Comment: 19 pages, to appear in proceedings of Quantum Structures VII, Int. J. Theor. Phy

    Verschraenkung versus Stosszahlansatz: Disappearance of the Thermodynamic Arrow in a High-Correlation Environment

    Full text link
    The crucial role of ambient correlations in determining thermodynamic behavior is established. A class of entangled states of two macroscopic systems is constructed such that each component is in a state of thermal equilibrium at a given temperature, and when the two are allowed to interact heat can flow from the colder to the hotter system. A dilute gas model exhibiting this behavior is presented. This reversal of the thermodynamic arrow is a consequence of the entanglement between the two systems, a condition that is opposite to molecular chaos and shown to be unlikely in a low-entropy environment. By contrast, the second law is established by proving Clausius' inequality in a low-entropy environment. These general results strongly support the expectation, first expressed by Boltzmann and subsequently elaborated by others, that the second law is an emergent phenomenon that requires a low-entropy cosmological environment, one that can effectively function as an ideal information sink.Comment: 4 pages, REVTeX

    Quantum communication using a bounded-size quantum reference frame

    Full text link
    Typical quantum communication schemes are such that to achieve perfect decoding the receiver must share a reference frame with the sender. Indeed, if the receiver only possesses a bounded-size quantum token of the sender's reference frame, then the decoding is imperfect, and we can describe this effect as a noisy quantum channel. We seek here to characterize the performance of such schemes, or equivalently, to determine the effective decoherence induced by having a bounded-size reference frame. We assume that the token is prepared in a special state that has particularly nice group-theoretic properties and that is near-optimal for transmitting information about the sender's frame. We present a decoding operation, which can be proven to be near-optimal in this case, and we demonstrate that there are two distinct ways of implementing it (corresponding to two distinct Kraus decompositions). In one, the receiver measures the orientation of the reference frame token and reorients the system appropriately. In the other, the receiver extracts the encoded information from the virtual subsystems that describe the relational degrees of freedom of the system and token. Finally, we provide explicit characterizations of these decoding schemes when the system is a single qubit and for three standard kinds of reference frame: a phase reference, a Cartesian frame (representing an orthogonal triad of spatial directions), and a reference direction (representing a single spatial direction).Comment: 17 pages, 1 figure, comments welcome; v2 published versio

    A Lower Bound for Quantum Phase Estimation

    Get PDF
    We obtain a query lower bound for quantum algorithms solving the phase estimation problem. Our analysis generalizes existing lower bound approaches to the case where the oracle Q is given by controlled powers Q^p of Q, as it is for example in Shor's order finding algorithm. In this setting we will prove a log (1/epsilon) lower bound for the number of applications of Q^p1, Q^p2, ... This bound is tight due to a matching upper bound. We obtain the lower bound using a new technique based on frequency analysis.Comment: 7 pages, 1 figur

    Three-dimensionality of space and the quantum bit: an information-theoretic approach

    Full text link
    It is sometimes pointed out as a curiosity that the state space of quantum two-level systems, i.e. the qubit, and actual physical space are both three-dimensional and Euclidean. In this paper, we suggest an information-theoretic analysis of this relationship, by proving a particular mathematical result: suppose that physics takes place in d spatial dimensions, and that some events happen probabilistically (not assuming quantum theory in any way). Furthermore, suppose there are systems that carry "minimal amounts of direction information", interacting via some continuous reversible time evolution. We prove that this uniquely determines spatial dimension d=3 and quantum theory on two qubits (including entanglement and unitary time evolution), and that it allows observers to infer local spatial geometry from probability measurements.Comment: 13 + 22 pages, 9 figures. v4: some clarifications, in particular in Section V / Appendix C (added Example 39

    On defining the Hamiltonian beyond quantum theory

    Full text link
    Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories, a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition to example toy theories, and discuss how the quantum notion of time evolution as a phase between energy eigenstates generalises to other theories.Comment: Authors' accepted manuscript for inclusion in the Foundations of Physics topical collection on Foundational Aspects of Quantum Informatio
    corecore