40 research outputs found

    Q50, an Iron-Chelating and Zinc-Complexing Agent, Improves Cardiac Function in Rat Models of Ischemia/Reperfusion-Induced Myocardial Injury

    Get PDF
    Background: Reperfusion of ischemic myocardium may contribute to substantial cardiac tissue damage, but the addition of iron chelators, zinc or zinc complexes has been shown to prevent heart from reperfusion injury. We investigated the possible beneficial effects of an iron-chelating and zinc-complexing agent, Q50, in rat models of ischemia/reperfusion (I/R)-induced myocardial infarction and on global reversible myocardial I/R injury after heart transplantation. Methods and Results: Rats underwent 45-min myocardial ischemia by left anterior descending coronary artery ligation followed by 24h reperfusion. Vehicle or Q50 (10mg/kg, IV) were given 5min before reperfusion. In a heart transplantation model, donor rats received vehicle or Q50 (30mg/kg, IV) 1h before the onset of ischemia. In myocardial infarcted rats, increased left ventricular end-systolic and end-diastolic volumes were significantly decreased by Q50 post treatment as compared with the sham group. Moreover, in I/R rat hearts, the decreased dP/dtmax and load-independent contractility parameters were significantly increased after Q50. However, Q50 treatment did not reduce infarct size or have any effect on increased plasma cardiac troponin-T-levels. In the rat model of heart transplantation, 1h after reperfusion, decreased left ventricular systolic pressure, dP/dtmax, dP/dtmin and myocardial ATP content were significantly increased and myocardial protein expression of superoxide dismutase-1 was upregulated after Q50 treatment. Conclusions: In 2 experimental models of I/R, administration of Q50 improved myocardial function. Its mechanisms of action implicate in part the restoration of myocardial high-energy phosphates and upregulation of antioxidant enzymes.  (Circ J 2013; 77: 1817–1826

    Endothelial dysfunction of bypass graft: Direct comparison of In Vitro and In Vivo models of ischemia-reperfusion injury

    Get PDF
    BACKGROUND: Although, ischemia/reperfusion induced vascular dysfunction has been widely described, no comparative study of in vivo- and in vitro-models exist. In this study, we provide a direct comparison between models (A) ischemic storage and in-vitro reoxygenation (B) ischemic storage and in vitro reperfusion (C) ischemic storage and in-vivo reperfusion. METHODS AND RESULTS: Aortic arches from rats were stored for 2 hours in saline. Arches were then (A) in vitro reoxygenated (B) in vitro incubated in hypochlorite for 30 minutes (C) in vivo reperfused after heterotransplantation (2, 24 hours and 7 days reperfusion). Endothelium-dependent and independent vasorelaxations were assessed in organ bath. DNA strand breaks were assessed by TUNEL-method, mRNA expressions (caspase-3, bax, bcl-2, eNOS) by quantitative real-time PCR, proteins by Western blot analysis and the expression of CD-31 by immunochemistry. Endothelium-dependent maximal relaxation was drastically reduced in the in-vivo models compared to ischemic storage and in-vitro reperfusion group, and no difference showed between ischemic storage and control group. CD31-staining showed significantly lower endothelium surface ratio in-vivo, which correlated with TUNEL-positive ratio. Increased mRNA and protein levels of pro- and anti-apoptotic gens indicated a significantly higher damage in the in-vivo models. CONCLUSION: Even short-period of ischemia induces severe endothelial damage (in-vivo reperfusion model). In-vitro models of ischemia-reperfusion injury can be limitedly suited for reliable investigations. Time course of endothelial stunning is also described
    corecore