24 research outputs found
Recommended from our members
Seasonal tropical cyclone forecasts
Seasonal forecasts of tropical cyclone activity in various regions have been developed since the first attempts in the early 1980s by Neville Nicholls (1979) for the Australian region and William Gray (1984(a), (b)) for the North Atlantic region. Over time, forecasts for different regions, using differing methodologies, have been developed. Tourism in various regions, such as the US Gulf and East Coasts and the Caribbean, is impacted by these seasonal forecasts. Insurance and re-insurance companies also make use of seasonal forecasts in their policy decisions. It is fundamental to provide these users with information about the accuracy of seasonal forecasts. Seasonal forecasts have limited use for emergency managers, because of the lack of skill in predicting impacts at the city or county level
Recommended from our members
Strength outlooks for the El Niño-Southern Oscillation
Three strategies for creating probabilistic forecast outlooks for El Niño-Southern Oscillation (ENSO) are compared. One is subjective and is currently used by the NOAA/Climate Prediction Center (CPC) to produce official ENSO outlooks. A second is purely objective and is based on the North American Multimodel Ensemble (NMME).Anew third strategy is proposed in which the forecaster only provides the expected value of the Niño-3.4 index, and then categorical probabilities are objectively determined based on past skill. The new strategy results in more confident probabilities compared to the subjective approach and higher verification scores, while avoiding the significant forecast busts that sometimes afflict the NMME-based objective approach. The higher verification scores of the new strategy appear to result from the added value that forecasters provide in predicting the mean, combined with more reliable representations of uncertainty, which is difficult to represent because forecasters often assume less confidence than is justified. Moreover, the new approach can produce higher-resolution probabilistic forecasts that include ENSO strength information and that are difficult, if not impossible, for forecasters to produce. To illustrate, a nine-category ENSO outlook based on the new strategy is assessed and found to be skillful. The new approach can be applied to other outlooks where users desire higher-resolution probabilistic forecasts, including the extremes