103 research outputs found

    Alzheimer's Disease and Metals: A Review of the Involvement of Cellular Membrane Receptors in Metallosignalling

    Get PDF
    Alzheimer's disease (AD) is a debilitating form of dementia. The hallmark protein associated with the disease is the amyloid beta (Aβ) peptide. Aggregation of Aβ has been shown to depend on interactions with metals. The recent studies now demonstrate that metals also play additional important roles in the disease process. Consequently, there may be benefit from modulating metal homeostasis. However, the role and subcellular location of metals within neurons is not well understood. There is growing evidence to suggest that metals can act at the site of cellular membrane receptors and affect cellular signaling by modulating the signal transduction of those receptors. The glutamatergic and cholinergic receptor systems, both well-known neurotransmitter systems affected in AD, have well-documented metal interactions, as do the tropomyosin-receptor kinase (Trk) family of receptors and the epidermal growth factor (EGF) receptor. In this paper, the metal interactions with these membrane receptor systems will be explored and thus the potential for membrane receptors as an intervention point in AD will be assessed

    Intermolecular displacement of S-bound L-methionine on platinum(II) by guanosine 5′-monophosphate: Implications for the mechanism of action of anticancer drugs

    Get PDF
    NMR investigations of the kinetics and thermodynamics of the competitive binding of L-methionine (Met), L-histidine (His), and 5′-monophosphates of guanosine (5′-GMP), adenosine (5′-AMP), thymidine (5′-TMP) and cytidine (5′-CMP) to [Pt(dien)Cl]+ (dien = 1,5-diamino-3-azapentane) in aqueous solution show that 5′-GMP selectively displaces S-bound Met, a finding which has implications for DNA platination by anticancer drugs in vivo

    Cisplatin binding sites on human albumin

    Get PDF
    Reactions of cisplatin (cis -[PtCl2(NH3)2]) with albumin are thought to play an important role in the metabolism of this anticancer drug. They are investigated here via (i) labeling of cisplatin with 15N and use of two-dimensional 1H,15N NMR spectroscopy, (ii) comparison of natural human serum albumin with recombinant human albumin (higher homogeneity and SH content), (iii) chemical modification of Cys, Met, and His residues, (iv) reactions of bound platinum with thiourea, and (v) gel filtration chromatography. In contrast to previous reports, it is shown that the major sulfur-containing binding site involves Met and not Cys-34, and also a N ligand, in the form of an S,N macrochelate. Additional monofunctional adducts involving other Met residues and Cys-34 are also observed. During the later stages of reactions of cisplatin with albumin, release of NH3 occurs due to the strong trans influence of Met sulfur, which weakens the Pt-NH3 bonds, and protein cross-linking is observed. The consequences of these findings for the biological activity of cisplatin-albumin complexes are discussed

    Characterization of brain-derived extracellular vesicle lipids in Alzheimer's disease

    Get PDF
    Lipid dyshomeostasis is associated with the most common form of dementia, Alzheimer's disease (AD). Substantial progress has been made in identifying positron emission tomography and cerebrospinal fluid biomarkers for AD, but they have limited use as front-line diagnostic tools. Extracellular vesicles (EVs) are released by all cells and contain a subset of their parental cell composition, including lipids. EVs are released from the brain into the periphery, providing a potential source of tissue and disease specific lipid biomarkers. However, the EV lipidome of the central nervous system is currently unknown and the potential of brain-derived EVs (BDEVs) to inform on lipid dyshomeostasis in AD remains unclear. The aim of this study was to reveal the lipid composition of BDEVs in human frontal cortex, and to determine whether BDEVs have an altered lipid profile in AD. Using semi-quantitative mass spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17 lipid classes and 692 lipid molecules. BDEVs were enriched in glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further report that BDEVs are enriched in ether-containing PS lipids, a finding that further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal cortex offered improved detection of dysregulated lipids in AD over global lipid profiling of this brain region. AD BDEVs had significantly altered glycerophospholipid and sphingolipid levels, specifically increased plasmalogen glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing lipids, and altered amide-linked acyl chain content in sphingomyelin and ceramide lipids relative to CTL. The most prominent alteration was a two-fold decrease in lipid species containing anti-inflammatory/pro-resolving docosahexaenoic acid. The in-depth lipidome analysis provided in this study highlights the advantage of EVs over more complex tissues for improved detection of dysregulated lipids that may serve as potential biomarkers in the periphery

    Copper binding to the Alzheimer’s disease amyloid precursor protein

    Get PDF
    Alzheimer’s disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called Aβ by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce Aβ levels and hence a molecular understanding of the interaction between metal and protein could lead to the development of novel therapeutics to treat the disease. We have recently determined the three-dimensional structures of apo and copper bound forms of CuBD. The structures provide a mechanism by which CuBD could readily transfer copper ions to other proteins. Importantly, the lack of significant conformational changes to CuBD on copper binding suggests a model in which copper binding affects the dimerisation state of APP leading to reduction in Aβ production. We thus predict that disruption of APP dimers may be a novel therapeutic approach to treat Alzheimer’s disease

    Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-β peptide

    Get PDF
    Copper and zinc play important roles in Alzheimer disease pathology with recent reports describing potential therapeutics based on modulation of metal bioavailability. We examined the ability of a range of metal bis(thiosemicarbazonato) complexes (MII(btsc), where M = Cu II or ZnII) to increase intracellular metal levels in Chinese hamster ovary cells overexpressing amyloid precursor protein (APP-CHO) and the subsequent effect on extracellular levels of amyloid-β peptide (Aβ). The CuII(btsc) complexes were engineered to be either stable to both a change in oxidation state and dissociation of metal or susceptible to intracellular reduction and dissociation of metal. Treatment of APP-CHO cells with stable complexes resulted in elevated levels of intracellular copper with no effect on the detected levels of Aβ. Treatment with complexes susceptible to intracellular reduction increased intracellular copper levels but also resulted in a dose-dependent reduction in the levels of monomeric Aβ. Treatment with less stable ZnII(btsc) complexes increased intracellular zinc levels with a subsequent dose-dependent depletion of monomeric Aβ levels. The increased levels of intracellular bioavailable copper and zinc initiated a signaling cascade involving activation of phosphoinositol 3-kinase and c-Jun N-terminal kinase. Inhibition of these enzymes prevented Aβ depletion induced by the MII(btsc) complexes. Inhibition of metalloproteases also partially restored Aβ levels, implicating metal-driven metalloprotease activation in the extracellular monomeric Aβ depletion. However, a role for alternative metal-induced Aβ metabolism has not been ruled out. These studies demonstrate that M II(btsc) complexes have potential for Alzheimer disease therapy

    Alzheimer's Aβ Peptides with Disease-Associated N-Terminal Modifications: Influence of Isomerisation, Truncation and Mutation on Cu2+ Coordination

    Get PDF
    coordination of various Aβ peptides has been widely studied. A number of disease-associated modifications involving the first 3 residues are known, including isomerisation, mutation, truncation and cyclisation, but are yet to be characterised in detail. In particular, Aβ in plaques contain a significant amount of truncated pyroglutamate species, which appear to correlate with disease progression. coordination modes between pH 6–9 with nominally the same first coordination sphere, but with a dramatically different pH dependence arising from differences in H-bonding interactions at the N-terminus. coordination of Aβ, which may be critical for alterations in aggregation propensity, redox-activity, resistance to degradation and the generation of the Aβ3–× (× = 40/42) precursor of disease-associated Aβ3[pE]–x species

    The N-Terminal residues 43 to 60 form the interface for dopamine mediated α-synuclein dimerisation

    Get PDF
    α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson's disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43-140) and C-terminally (1-95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA: α-syn oligomers, albeit 1-95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43-140 protein, we analysed the structural characteristics of the DA:α-syn 43-140 dimer and α-syn 43-140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers
    corecore