19,358 research outputs found

    Difficulty of distinguishing product states locally

    Get PDF
    Non-locality without entanglement is a rather counter-intuitive phenomenon in which information may be encoded entirely in product (unentangled) states of composite quantum systems in such a way that local measurement of the subsystems is not enough for optimal decoding. For simple examples of pure product states, the gap in performance is known to be rather small when arbitrary local strategies are allowed. Here we restrict to local strategies readily achievable with current technology; those requiring neither a quantum memory nor joint operations. We show that, even for measurements on pure product states there can be a large gap between such strategies and theoretically optimal performance. Thus even in the absence of entanglement physically realizable local strategies can be far from optimal for extracting quantum information.Comment: 5 pages, 1 figur

    GaAsP on GaP top solar cells

    Get PDF
    GaAsP on GaP top solar cells as an attachment to silicon bottom solar cells are being developed. The GaAsP on GaP system offers several advantages for this top solar cell. The most important is that the gallium phosphide substrate provides a rugged, transparent mechanical substrate which does not have to be removed or thinned during processing. Additional advantages are that: (1) gallium phosphide is more oxidation resistant than the III-V aluminum compounds, (2) a range of energy band gaps higher than 1.75 eV is readily available for system efficiency optimization, (3) reliable ohmic contact technology is available from the light-emitting diode industry, and (4) the system readily lends itself to graded band gap structures for additional increases in efficiency

    Stable, inflatable life raft for high seas rescue operations

    Get PDF
    Raft is easily deployed and highly maneuverable in water. It has false bottom of water ballast containers attached to underside, making it exceptionally stable platform from which swimmers can operate. Raft is attachable to external moorings

    Life raft stabilizer

    Get PDF
    An improved life raft stabilizer for reducing rocking and substantially precluding capsizing is discussed. The stabilizer may be removably attached to the raft and is defined by flexible side walls which extend a considerable depth downwardly to one another in the water. The side walls, in conjunction with the floor of the raft, form a ballast enclosure. A weight is placed in the bottom of the enclosure and water port means are provided in the walls. Placement of the stabilizer in the water allows the weighted bottom to sink, producing submerged deployment thereof and permitting water to enter the enclosure through the port means, thus forming a ballast for the raft

    On the Quantum Phase Operator for Coherent States

    Full text link
    In papers by Lynch [Phys. Rev. A41, 2841 (1990)] and Gerry and Urbanski [Phys. Rev. A42, 662 (1990)] it has been argued that the phase-fluctuation laser experiments of Gerhardt, B\"uchler and Lifkin [Phys. Lett. 49A, 119 (1974)] are in good agreement with the variance of the Pegg-Barnett phase operator for a coherent state, even for a small number of photons. We argue that this is not conclusive. In fact, we show that the variance of the phase in fact depends on the relative phase between the phase of the coherent state and the off-set phase Ï•0\phi_0 of the Pegg-Barnett phase operator. This off-set phase is replaced with the phase of a reference beam in an actual experiment and we show that several choices of such a relative phase can be fitted to the experimental data. We also discuss the Noh, Foug\`{e}res and Mandel [Phys.Rev. A46, 2840 (1992)] relative phase experiment in terms of the Pegg-Barnett phase taking post-selection conditions into account.Comment: 8 pages, 8 figures. Typographical errors and misprints have been corrected. The outline of the paper has also been changed. Physica Scripta (in press

    AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    Get PDF
    The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell

    The simplest demonstrations of quantum nonlocality

    Get PDF
    We investigate the complexity cost of demonstrating the key types of nonclassical correlations-Bell inequality violation, Einstein, Podolsky, Rosen (EPR)-steering, and entanglement-with independent agents, theoretically and in a photonic experiment. We show that the complexity cost exhibits a hierarchy among these three tasks, mirroring the recently discovered hierarchy for how robust they are to noise. For Bell inequality violations, the simplest test is the well-known Clauser-Horne-Shimony-Holt test, but for EPR-steering and entanglement the tests that involve the fewest number of detection patterns require nonprojective measurements. The simplest EPR-steering test requires a choice of projective measurement for one agent and a single nonprojective measurement for the other, while the simplest entanglement test uses just a single nonprojective measurement for each agent. In both of these cases, we derive our inequalities using the concept of circular two-designs. This leads to the interesting feature that in our photonic demonstrations, the correlation of interest is independent of the angle between the linear polarizers used by the two parties, which thus require no alignment

    Bilinear Quantum Monte Carlo: Expectations and Energy Differences

    Full text link
    We propose a bilinear sampling algorithm in Green's function Monte Carlo for expectation values of operators that do not commute with the Hamiltonian and for differences between eigenvalues of different Hamiltonians. The integral representations of the Schroedinger equations are transformed into two equations whose solution has the form ψa(x)t(x,y)ψb(y)\psi_a(x) t(x,y) \psi_b(y), where ψa\psi_a and ψb\psi_b are the wavefunctions for the two related systems and t(x,y)t(x,y) is a kernel chosen to couple xx and yy. The Monte Carlo process, with random walkers on the enlarged configuration space x⊗yx \otimes y, solves these equations by generating densities whose asymptotic form is the above bilinear distribution. With such a distribution, exact Monte Carlo estimators can be obtained for the expectation values of quantum operators and for energy differences. We present results of these methods applied to several test problems, including a model integral equation, and the hydrogen atom.Comment: 27 page

    Effects of squeezing on quantum nonlocality of superpositions of coherent states

    Full text link
    We analyze effects of squeezing upon superpositions of coherent states (SCSs) and entangled coherent states (ECSs) for Bell-inequality tests. We find that external squeezing can always increase the degrees of Bell violations, if the squeezing direction is properly chosen, for the case of photon parity measurements. On the other hand, when photon on/off measurements are used, the squeezing operation can enhance the degree of Bell violations only for moderate values of amplitudes and squeezing. We point out that a significant improvement is required over currently available squeezed SCSs in order to directly demonstrate a Bell-inequality violation in a real experiment.Comment: 7 pages, 4 figures, accepted for publication in Phys. Rev.

    Weak Values, Quantum Trajectories, and the Stony-Brook Cavity QED experiment

    Full text link
    Weak values as introduced by Aharonov, Albert and Vaidman (AAV) are ensemble average values for the results of weak measurements. They are interesting when the ensemble is preselected on a particular initial state and postselected on a particular final measurement result. I show that weak values arise naturally in quantum optics, as weak measurements occur whenever an open system is monitored (as by a photodetector). I use quantum trajectory theory to derive a generalization of AAV's formula to include (a) mixed initial conditions, (b) nonunitary evolution, (c) a generalized (non-projective) final measurement, and (d) a non-back-action-evading weak measurement. I apply this theory to the recent Stony-Brook cavity QED experiment demonstrating wave-particle duality [G.T. Foster, L.A. Orozco, H.M. Castro-Beltran, and H.J. Carmichael, Phys. Rev. Lett. {85}, 3149 (2000)]. I show that the ``fractional'' correlation function measured in that experiment can be recast as a weak value in a form as simple as that introduced by AAV.Comment: 6 pages, no figures. To be published in Phys. Rev.
    • …
    corecore