888 research outputs found

    Hole dynamics in a quantum antiferromagnet beyond the retraceable path approximation

    Full text link
    The one-hole spectral weight for two chains and two dimensional lattices is studied numerically using a new method of analysis of the spectral function within the Lanczos iteration scheme: the Lanczos spectra decoding method. This technique is applied to the t−Jzt-J_z model for Jz→0J_z \to 0, directly in the infinite size lattice. By a careful investigation of the first 13 Lanczos steps and the first 26 ones for the two dimensional and the two chain cases respectively, we get several new features of the one-hole spectral weight. A sharp incoherent peak with a clear momentum dispersion is identified, together with a second broad peak at higher energy. The spectral weight is finite up to the Nagaoka energy where it vanishes in a non-analytic way. Thus the lowest energy of one hole in a quantum antiferromagnet is degenerate with the Nagaoka energy in the thermodynamic limit.Comment: RevTeX 3.0, SISSA preprint 156/93/CM/MB, 10 pages + postscript file appended, contains more accurate calculations in Fig.

    Low energy and dynamical properties of a single hole in the t-Jz model

    Full text link
    We review in details a recently proposed technique to extract information about dynamical correlation functions of many-body hamiltonians with a few Lanczos iterations and without the limitation of finite size. We apply this technique to understand the low energy properties and the dynamical spectral weight of a simple model describing the motion of a single hole in a quantum antiferromagnet: the t−Jzt-J_z model in two spatial dimension and for a double chain lattice. The simplicity of the model allows us a well controlled numerical solution, especially for the two chain case. Contrary to previous approximations we have found that the single hole ground state in the infinite system is continuously connected with the Nagaoka fully polarized state for Jz→0J_z \to 0. Analogously we have obtained an accurate determination of the dynamical spectral weight relevant for photoemission experiments. For Jz=0J_z=0 an argument is given that the spectral weight vanishes at the Nagaoka energy faster than any power law, as supported also by a clear numerical evidence. It is also shown that spin charge decoupling is an exact property for a single hole in the Bethe lattice but does not apply to the more realistic lattices where the hole can describe closed loop paths.Comment: RevTex 3.0, 40 pages + 16 Figures in one file self-extracting, to appear in Phys. Rev

    Phase Diagram and Pairing Symmetry of the Two-Dimensional t-J Model by a Variation Theory

    Full text link
    Two-dimensional t-J model is studied by a variational Monte Carlo method, using Gutzwiller-Jastrow-type wave functions. Various kinds of superconducting pairing symmetries are compared in order to determine the phase diagram of the ground state in the full J/t-n plane. Near the half filling where the high temperature superconductivity is expected, the d_{x^2-y^2} wave pairing state is always the most stable among various symmetries. The three-site term hardly changes the phase diagram in this regime. In the low electron density, the extended s-type wave becomes a quantitatively good state for large J/t, although the energy gain is small. The Gutzwiller wave function is shown to be the exact ground state in the low-electron-density limit for the supersymmetric case (J/t=2).Comment: 13 pages, LaTeX with jpsj.sty etc. Hard copies of 22 figures available on request. Submitted to J.Phys.Soc.Jp

    Separation of Spin and Charge Quantum Numbers in Strongly Correlated Systems

    Full text link
    In this paper we reexamine the problem of the separation of spin and charge degrees of freedom in two dimensional strongly correlated systems. We establish a set of sufficient conditions for the occurence of spin and charge separation. Specifically, we discuss this issue in the context of the Heisenberg model for spin-1/2 on a square lattice with nearest (J1J_1) and next-nearest (J2J_2) neighbor antiferromagnetic couplings. Our formulation makes explicit the existence of a local SU(2) gauge symmetry once the spin-1/2 operators are replaced by bound states of spinons. The mean-field theory for the spinons is solved numerically as a function of the ratio J2/J1J_2/J_1 for the so-called s-RVB Ansatz. A second order phase transition exists into a novel flux state for J2/J1>(J2/J1)crJ_2/J_1>(J_2/J_1)_{{\rm cr}}. We identify the range 0<J2/J1<(J2/J1)cr0<J_2/J_1<(J_2/J_1)_{\rm cr} as the s-RVB phase. It is characterized by the existence of a finite gap to the elementary excitations (spinons) and the breakdown of all the continuous gauge symmetries. An effective continuum theory for the spinons and the gauge degrees of freedom is constructed just below the onset of the flux phase. We argue that this effective theory is consistent with the deconfinement of the spinons carrying the fundamental charge of the gauge group. We contrast this result with the study of the one dimensional quantum antiferromagnet within the same approach. We show that in the one dimensional model, the spinons of the gauge picture are always confined and thus cannot be identified with the gapless spin-1/2 excitations of the quantum antiferromagnet Heisenberg model.Comment: 56 pages, RevteX 3.

    Diagonalization in Reduced Hilbert Spaces using a Systematically Improved Basis: Application to Spin Dynamics in Lightly Doped Ladders

    Full text link
    A method is proposed to improve the accuracy of approximate techniques for strongly correlated electrons that use reduced Hilbert spaces. As a first step, the method involves a change of basis that incorporates exactly part of the short distance interactions. The Hamiltonian is rewritten in new variables that better represent the physics of the problem under study. A Hilbert space expansion performed in the new basis follows. The method is successfully tested using both the Heisenberg model and the t−Jt-J model with holes on 2-leg ladders and chains, including estimations for ground state energies, static correlations, and spectra of excited states. An important feature of this technique is its ability to calculate dynamical responses on clusters larger than those that can be studied using Exact Diagonalization. The method is applied to the analysis of the dynamical spin structure factor S(q,ω)S(q,\omega) on clusters with 2×162 \times 16 sites and 0 and 2 holes. Our results confirm previous studies (M. Troyer, H. Tsunetsugu, and T. M. Rice, Phys. Rev. B53 B 53, 251 (1996)) which suggested that the state of the lowest energy in the spin-1 2-holes subspace corresponds to the bound state of a hole pair and a spin-triplet. Implications of this result for neutron scattering experiments both on ladders and planes are discussed.Comment: 9 pages, 8 figures, Revtex + psfig; changed conten

    Spin Gap and Superconductivity in the One-Dimensional t-J Model with Coulomb Repulsion

    Full text link
    The one-dimensional t-J model with density-density repulsive interactions is investigated using exact diagonalization and quantum Monte Carlo methods. A short-range repulsion pushes phase separation to larger values of J/t, and leads to a widened precursor region in which a spin gap and strengthened superconducting correlations appear. The correlation exponent is calculated. On the contrary, a long-range repulsion of 1/r1/r-form suppresses superconductivity in the precursor region.Comment: 26 pages (RevTeX), 10 figures available upon request as PostScript file or hardcopy, IPS-Report Nr. 93/0

    The incommensurate charge-density-wave instability in the extended three-band Hubbard model

    Full text link
    The infinite-U three-band Hubbard model is considered in order to describe the CuO_2 planes of the high temperature superconducting cuprates. The charge instabilities are investigated when the model is extended with a nearest-neighbor repulsion between holes on copper d and oxygen p orbitals and in the presence of a long-range Coulombic repulsion. It is found that a first-order valence instability line ending with a critical point is present like in the previously investigated model without long-range forces. However, the dominant critical instability is the formation of incommensurate charge-density-waves, which always occur before the valence-instability critical point is reached. An effective singular attraction arises in the proximity of the charge-density wave instability, accounting for both a strong pairing mechanism and for the anomalous normal state properties.Comment: 15 pages in RevteX. Figures available from M. Grill

    Psychological Flexibility, ACT, and Organizational Behavior

    Get PDF
    This paper offers organizational behavior management (OBM) a behavior analytically consistent way to expand its analysis of, and methods for changing, organizational behavior. It shows how Relational Frame Theory (RFT) suggests that common, problematic, psychological processes emerge from language itself, and they produce psychological inflexibility. Research suggests that an applied extension of RFT, Acceptance and Commitment Therapy, has led to new interventions that increase psychological flexibility and, thereby enhance, organizational behavior and health

    The mechanism of spin and charge separation in one dimensional quantum antiferromagnets

    Full text link
    We reconsider the problem of separation of spin and charge in one dimensional quantum antiferromagnets. We show that spin and charge separation in one dimensional strongly correlated systems cannot be described by the slave boson or fermion representation within any perturbative treatment of the interactions between the slave holons and slave spinons. The constraint of single occupancy must be implemented exactly. As a result the slave fermions and bosons are not part of the physical spectrum. Instead, the excitations which carry the separate spin and charge quantum numbers are solitons. To prove this {\it no-go} result, it is sufficient to study the pure spinon sector in the slave boson representation. We start with a short-range RVB spin liquid mean-field theory for the frustrated antiferromagnetic spin-12{1\over2} chain. We derive an effective theory for the fluctuations of the Affleck-Marston and Anderson order parameters. We show how to recover the phase diagram as a function of the frustration by treating the fluctuations non-perturbatively.Comment: 53 pages; Revtex 3.

    Single-hole dynamics in dimerized and frustrated spin-chains

    Full text link
    We present a unified account for the coupled single-hole- and spin-dynamics in the spin-gap phase of dimerized and frustrated spin-chains and two-leg spin ladders. Based on the strong dimer-limit of a one-dimensional t123t_123-J123J_123-model a diagrammatic approach is presented which employs a mapping of the spin-Hamiltonian onto a pseudo-fermion bond-boson model. Results for the single-hole spectrum are detailed. A finite quasi-particle weight is observed and studied for a variety of system parameters. A comparison with existing exact diagonalization data is performed and good agreement is found.Comment: 10 pages, 12 figure
    • …
    corecore