31,382 research outputs found

    Current-spin coupling for ferromagnetic domain walls in fine wires

    Get PDF
    The coupling between a current and a domain wall is examined. In the presence of a finite current and the absence of a potential which breaks the translational symmetry, there is a perfect transfer of angular momentum from the conduction electrons to the wall. As a result, the ground state is in uniform motion. This remains the case when relaxation is accounted for. This is described by, appropriately modified, Landau-Lifshitz-Gilbert equations.Comment: 4 pqges, no figure

    PEPSI deep spectra. III. A chemical analysis of the ancient planet-host star Kepler-444

    Full text link
    We obtained an LBT/PEPSI spectrum with very high resolution and high signal-to-noise ratio (S/N) of the K0V host Kepler-444, which is known to host 5 sub-Earth size rocky planets. The spectrum has a resolution of R=250,000, a continuous wavelength coverage from 4230 to 9120A, and S/N between 150 and 550:1 (blue to red). We performed a detailed chemical analysis to determine the photospheric abundances of 18 chemical elements, in order to use the abundances to place constraints on the bulk composition of the five rocky planets. Our spectral analysis employs the equivalent width method for most of our spectral lines, but we used spectral synthesis to fit a small number of lines that require special care. In both cases, we derived our abundances using the MOOG spectral analysis package and Kurucz model atmospheres. We find no correlation between elemental abundance and condensation temperature among the refractory elements. In addition, using our spectroscopic stellar parameters and isochrone fitting, we find an age of 10+/-1.5 Gyr, which is consistent with the asteroseismic age of 11+/-1 Gyr. Finally, from the photospheric abundances of Mg, Si, and Fe, we estimate that the typical Fe-core mass fraction for the rocky planets in the Kepler-444 system is approximately 24 per cent. If our estimate of the Fe-core mass fraction is confirmed by more detailed modeling of the disk chemistry and simulations of planet formation and evolution in the Kepler-444 system, then this would suggest that rocky planets in more metal-poor and alpha-enhanced systems may tend to be less dense than their counterparts of comparable size in more metal-rich systems.Comment: in press, 11 pages, 3 figures, data available from pepsi.aip.d

    Turbulent transport in tokamak plasmas with rotational shear

    Full text link
    Nonlinear gyrokinetic simulations have been conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal E x B shear value for plasma confinement. Local maxima in the momentum fluxes are also observed, allowing for the possibility of bifurcations in the E x B shear. The sensitive dependence of heat flux on temperature gradient is relaxed for large flow shear values, with the critical temperature gradient increasing at lower flow shear values. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.Comment: 4 pages, 5 figures, submitted to PR

    Ages for illustrative field stars using gyrochronology: viability, limitations and errors

    Full text link
    We here develop an improved way of using a rotating star as a clock, set it using the Sun, and demonstrate that it keeps time well. This technique, called gyrochronology, permits the derivation of ages for solar- and late-type main sequence stars using only their rotation periods and colors. The technique is clarified and developed here, and used to derive ages for illustrative groups of nearby, late-type field stars with measured rotation periods. We first demonstrate the reality of the interface sequence, the unifying feature of the rotational observations of cluster and field stars that makes the technique possible, and extends it beyond the proposal of Skumanich by specifying the mass dependence of rotation for these stars. We delineate which stars it cannot currently be used on. We then calibrate the age dependence using the Sun. The errors are propagated to understand their dependence on color and period. Representative age errors associated with the technique are estimated at ~15% (plus possible systematic errors) for late-F, G, K, & early-M stars. Ages derived via gyrochronology for the Mt. Wilson stars are shown to be in good agreement with chromospheric ages for all but the bluest stars, and probably superior. Gyro ages are then calculated for each of the active main sequence field stars studied by Strassmeier and collaborators where other ages are not available. These are shown to be mostly younger than 1Gyr, with a median age of 365Myr. The sample of single, late-type main sequence field stars assembled by Pizzolato and collaborators is then assessed, and shown to have gyro ages ranging from under 100Myr to several Gyr, and a median age of 1.2Gyr. Finally, we demonstrate that the individual components of the three wide binaries XiBooAB, 61CygAB, & AlphaCenAB yield substantially the same gyro ages.Comment: 58 pages, 18 color figures, accepted for publication in The Astrophysical Journal; Age uncertainties slightly modified upon correcting an algebraic error in Section

    On the Symmetries of the Edgar-Ludwig Metric

    Full text link
    The conformal Killing equations for the most general (non-plane wave) conformally flat pure radiation field are solved to find the conformal Killing vectors. As expected fifteen independent conformal Killing vectors exist, but in general the metric admits no Killing or homothetic vectors. However for certain special cases a one-dimensional group of homotheties or motions may exist and in one very special case, overlooked by previous investigators, a two-dimensional homethety group exists. No higher dimensional groups of motions or homotheties are admitted by these metrics.Comment: Plain TeX, 7 pages, No figure

    Zero-Turbulence Manifold in a Toroidal Plasma

    Full text link
    Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas. The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by the parallel velocity gradient. Here it is shown that q/\epsilon (magnetic field pitch/inverse aspect ratio) is a critical control parameter for sheared tokamak turbulence. By reducing q/\epsilon, far higher temperature gradients can be achieved without triggering turbulence, in some instances comparable to those found experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-shear limit, over the parameter space (\gamma_E, q/\epsilon, R/L_T), where \gamma_E is the perpendicular flow shear and R/L_T is the normalised inverse temperature gradient scale. The extent to which it can be constructed from linear theory is discussed.Comment: 5 Pages, 4 Figures, Submitted to PR
    corecore