1,121 research outputs found

    Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    Full text link
    Traditionally stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high enough levels to induce a runaway greenhouse for a long enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses," and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e. with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. Planets orbiting stars with masses <0.3 solar masses may be in danger of desiccation via tidal heating. We apply these concepts to Gl 667C c, a ~4.5 Earth-mass planet orbiting a 0.3 solar mass star at 0.12 AU. We find that it probably did not lose its water via tidal heating as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for non-circular orbits. In the appendices we review a) the moist and runaway greenhouses, b) hydrogen escape, c) stellar mass-radius and mass-luminosity relations, d) terrestrial planet mass-radius relations, and e) linear tidal theories. [abridged]Comment: 59 pages, 11 figures, accepted to Astrobiology. New version includes an appendix on the water loss timescal

    Josephson Current in the Presence of a Precessing Spin

    Full text link
    The Josephson current in the presence of a precessing spin between various types of superconductors is studied. It is shown that the Josephson current flowing between two spin-singlet pairing superconductors is not modulated by the precession of the spin. When both superconductors have equal-spin-triplet pairing state, the flowing Josephson current is modulated with twice of the Larmor frequency by the precessing spin. It was also found that up to the second tunneling matrix elements, no Josephson current can occur with only a direct exchange interaction between the localized spin and the conduction electrons, if the two superconductors have different spin-parity pairing states.Comment: 5 pages, 1 figur

    The changing of the guard: groupwork with people who have intellectual disabilities

    Get PDF
    This paper considers the impact of service systems on group activities. It describes an inter-professional groupwork project facilitated by a social worker and a community nurse. The project provided an emancipatory experience for a group of adults who had intellectual disabilities. The group was charged with the task of reviewing and updating the recruitment and interview processes used by a 'Learning Disability Partnership Board', when employing new support workers. The paper begins with a brief history of intellectual disability and provides a context to the underpinning philosophical belief that people should be encouraged and supported to inhabit valued social roles no matter what disability they may have. It then identifies the ways in which the sponsoring health, education and social care services impacted on the creation and development of a groupwork project. It might have been expected that the nature of the intellectual disability would have been the major influence on group process. However the paper reveals that organisational constraints had a significant impact on group functioning. Issues including, staffing budgets and transport contracts impacted on group process and function. The results of the project show how, with adequate support, people with intellectual disability can make important decisions that have long-reaching impacts on the services

    Transverse Spin at PHENIX: Results and Prospects

    Full text link
    The Relativistic Heavy Ion Collider (RHIC), as the world's first and only polarized proton collider, offers a unique environment in which to study the spin structure of the proton. In order to study the proton's transverse spin structure, the PHENIX experiment at RHIC took data with transversely polarized beams in 2001-02 and 2005, and it has plans for further running with transverse polarization in 2006 and beyond. Results from early running as well as prospective measurements for the future will be discussed.Comment: 6 pages, 2 figures, presented at Transversity 2005, Como, Ital

    Impurity state in the vortex core of d-wave superconductors: Anderson impurity model versus unitary impurity model

    Get PDF
    Using an extended Anderson/Kondo impurity model to describe the magnetic moments around an impurity doped in high-TcT_{\text{c}} d-wave cuprates and in the framework of the slave-boson meanfield approach, we study numerically the impurity state in the vortex core by exact diagonalization of the well-established Bogoliubov-de Gennes equations. The low-energy impurity state is found to be good agreement with scanning tunnelingmicroscopy observation. After pinning a vortex on the impurity site, we compare the unitary impurity model with the extended Anderson impurity model by examining the effect of the magnetic field on the impurity state. We find that the impurity resonance in the unitary impurity model is strongly suppressed by the vortex; while it is insensitive to the field in the extended Anderson impurity model.Comment: 8 pages, 3 figure

    Distribution of exchange energy in a bond-alternating S=1 quantum spin chain

    Full text link
    The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP is studied by single crystal inelastic neutron scattering. Parameters of the measured dispersion relation for magnetic excitations are compared to existing numerical results and used to determine the magnitude of bond-strength alternation. The measured neutron scattering intensities are also analyzed using the 1st-moment sum rules for the magnetic dynamic structure factor, to directly determine the modulation of ground state exchange energies. These independently determined modulation parameters characterize the level of spin dimerization in NTENP. First-principle DMRG calculations are used to study the relation between these two quantities.Comment: 10 pages, 10 figure

    On the Application of the Non Linear Sigma Model to Spin Chains and Spin Ladders

    Full text link
    We review the non linear sigma model approach (NLSM) to spin chains and spin ladders, presenting new results. The generalization of the Haldane's map to ladders in the Hamiltonian approach, give rise to different values of the θ\theta parameter depending on the spin S, the number of legs nℓn_{\ell} and the choice of blocks needed to built up the NLSM fields. For rectangular blocks we obtain θ=0\theta = 0 or 2πS2 \pi S depending on wether nℓn_{\ell}, is even or odd, while for diagonal blocks we obtain θ=2πSnℓ\theta = 2 \pi S n_{\ell}. Both results agree modulo 2π2 \pi, and yield the same prediction, namely that even ( resp. odd) ladders are gapped (resp. gapless). For even legged ladders we show that the spin gap collapses exponentially with nℓn_{\ell} and we propose a finite size correction to the gap formula recently derived by Chakravarty using the 2+1 NSLM, which gives a good fit of numerical results. We show the existence of a Haldane phase in the two legged ladder using diagonal blocks and finally we consider the phase diagram of dimerized ladders.Comment: 25 pages, Latex, 7 figures in postscript files, Proc. of the 1996 El Escorial Summer School on "Strongly Correlated Magnetic and Superconducting Systems". Some more references are adde

    Interplay of quantum magnetic and potential scattering around Zn or Ni impurity ions in superconducting cuprates

    Full text link
    To describe the scattering of superconducting quasiparticles from non-magnetic (Zn) or magnetic (Ni) impurities in optimally doped high Tc_c cuprates, we propose an effective Anderson model Hamiltonian of a localized electron hybridizing with dx2−y2d_{x^2-y^2}-wave BCS type superconducting quasiparticles with an attractive scalar potential at the impurity site. Due to the strong local antiferromagnetic couplings between the original Cu ions and their nearest neighbors, the localized electron in the Ni-doped materials is assumed to be on the impurity sites, while in the Zn-doped materials the localized electron is distributed over the four nearest neighbor sites of the impurities with a dominant dx2−y2d_{x^2-y^2} symmetric form of the wave function. With Ni impurities, two resonant states are formed above the Fermi level in the local density of states at the impurity site, while for Zn impurities a sharp resonant peak below the Fermi level dominates in the local density of states at the Zn site, accompanied by a small and broad resonant state above the Fermi level mainly induced by the potential scattering. In both cases, there are no Kondo screening effects. The local density of states and their spatial distribution at the dominant resonant energy around the substituted impurities are calculated for both cases, and they are in good agreement with the experimental results of scanning tunneling microscopy in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} with Zn or Ni impurities, respectively.Comment: 24 pages, Revtex, 8 figures, submitted to Physical Review B for publication. Sub-ject Class: Superconductivity; Strongly Correlated Electron
    • …
    corecore