387 research outputs found

    Making A Real Connection:Pro-Social Collaborative Play in Extended Realities – Trends, Challenges and Potentials

    Get PDF
    Extended reality (XR) has emerged as new cutting-edge technology, encompassing augmented, virtual and mixed reality. Extended reality redefines and elevates the game user experience within immersive and blended environments and opens new horizons, not just for gaming but also for enhancing pro-social connections through collaborative play. This workshop is dedicated to charting the course of trends, identifying and dissecting challenges, and probing the potential inherent in pro-social collaborative play within extended realities. We invite researchers, designers, and practitioners to come together, offering a platform to showcase different approaches. The core objective is to foster the exchange of knowledge and rigorous research findings within this emerging field. By doing so, we aim to build a network and lay a robust foundation for the future implementation of collaborative play in extended reality, paving the way for its seamless integration into the scientific discourse and practice

    A Study of Condensation and the Operation of Diffusion Cloud Chambers

    Get PDF
    Abstract Not Provided

    Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves

    Get PDF
    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second and third harmonic voltage response non locally, the model is experimentally examined. The results indicate that the combination of Peltier and Seebeck effects contributes significantly to the nonlocal baseline resistance. Moreover, we found that the second and third harmonic response signals can be attributed to Joule heating and temperature dependencies of both Seebeck coefficient and resistivity.Comment: 4 pages, 4 figure

    Protease inhibitors targeting coronavirus and filovirus entry.

    Get PDF
    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and potentially MERS, while vinyl sulfone-based inhibitors are excellent lead candidates for Ebola virus therapeutics

    Using Augmented Reality Toward Improving Social Skills:Scoping Review

    Get PDF
    BackgroundAugmented reality (AR) has emerged as a promising technology in educational settings owing to its engaging nature. However, apart from applications aimed at the autism spectrum disorder population, the potential of AR in social-emotional learning has received less attention. ObjectiveThis scoping review aims to map the range of AR applications that improve social skills and map the characteristics of such applications. MethodsIn total, 2 independent researchers screened 2748 records derived from 3 databases in December 2021—PubMed, IEEE Xplore, and ACM Guide to Computing Literature. In addition, the reference lists of all the included records and existing reviews were screened. Records that had developed a prototype with the main outcome of improving social skills were included in the scoping review. Included records were narratively described for their content regarding AR and social skills, their target populations, and their outcomes. Evaluation studies were assessed for methodological quality. ResultsA total of 17 records met the inclusion criteria for this study. Overall, 10 records describe applications for children with autism, primarily teaching about reading emotions in facial expressions; 7 records describe applications for a general population, targeting both children and adults, with a diverse range of outcome goals. The methodological quality of evaluation studies was found to be weak. ConclusionsMost applications are designed to be used alone, although AR is well suited to facilitating real-world interactions during a digital experience, including interactions with other people. Therefore, future AR applications could endorse social skills in a general population in more complex group settings

    Electrically driven photon emission from individual atomic defects in monolayer WS2.

    Get PDF
    Quantum dot-like single-photon sources in transition metal dichalcogenides (TMDs) exhibit appealing quantum optical properties but lack a well-defined atomic structure and are subject to large spectral variability. Here, we demonstrate electrically stimulated photon emission from individual atomic defects in monolayer WS2 and directly correlate the emission with the local atomic and electronic structure. Radiative transitions are locally excited by sequential inelastic electron tunneling from a metallic tip into selected discrete defect states in the WS2 bandgap. Coupling to the optical far field is mediated by tip plasmons, which transduce the excess energy into a single photon. The applied tip-sample voltage determines the transition energy. Atomically resolved emission maps of individual point defects closely resemble electronic defect orbitals, the final states of the optical transitions. Inelastic charge carrier injection into localized defect states of two-dimensional materials provides a powerful platform for electrically driven, broadly tunable, atomic-scale single-photon sources
    • …
    corecore