592 research outputs found

    Justifying the exotic Theta+ pentaquark

    Full text link
    The existence of a light S=+1 baryon resonance follows from Quantum Field Theory applied to baryons. This is illustrated in the Skyrme model (where Theta+ exists but is too strong) and in a new mean field approach where Theta+ arises as a consequence of three known resonances: Lambda(1405), N(1440) and N(1535).Comment: 3 p., contribution to the PANIC-08 proceeding

    Developments in Rare Kaon Decay Physics

    Get PDF
    We review the current status of the field of rare kaon decays. The study of rare kaon decays has played a key role in the development of the standard model, and the field continues to have significant impact. The two areas of greatest import are the search for physics beyond the standard model and the determination of fundamental standard-model parameters. Due to the exquisite sensitivity of rare kaon decay experiments, searches for new physics can probe very high mass scales. Studies of the k->pnn modes in particular, where the first event has recently been seen, will permit tests of the standard-model picture of quark mixing and CP violation.Comment: One major revision to the text is the branching ratio of KL->ppg, based on a new result from KTeV. Several references were updated, with minor modifications to the text. A total of 48 pages, with 28 figures, in LaTeX; to be published in the Annual Review of Nuclear and Particle Science, Vol. 50, December 200

    Further evidence for formation of a narrow baryon resonance with positive strangeness in K+ collisions with Xe nuclei

    Full text link
    We have continued our investigation of the charge-exchange reaction K^+ Xe --> K^0 p Xe' in the bubble chamber DIANA. In agreement with our previous results based on part of the present statistics, formation of a narrow p K^0 resonance with mass of 1537+-2 MeV/c^2 is observed in the elementary transition K^+ n --> K^0 p on a neutron bound in the Xenon nucleus. Visible width of the peak is consistent with being entirely due to instrumental resolution and allows to place an upper limit on its intrinsic width: \Gamma < 9 MeV/c^2. A more precise estimate of the resonance intrinsic width, \Gamma = 0.36+-0.11 MeV/c^2, is obtained from the ratio between the numbers of resonant and non-resonant charge-exchange events. The signal is observed in a restricted interval of incident K^+ momentum, that is consistent with smearing of a narrow p K^0 resonance by Fermi motion of the target neutron. Statistical significance of the signal is some 7.3, 5.3, and 4.3 standard deviations for the estimators S/sqrt{B}, S/sqrt{S+B}, and S/sqrt{S+2B}, respectively. This observation confirms and reinforces our earlier results, and offers strong evidence for formation of a pentaquark baryon with positive strangeness in the charge-exchange reaction K^+ n --> K^0 p on a bound neutron.Comment: 13 pages, 8 figures, some chenges in text and references, more precise estimate of Theta(1540) to add, submitted to Phys.Atom.Nucl(Yad.Fiz.

    Influence of a Z+(1540) resonance on K+N scattering

    Full text link
    The impact of a (I=0, J^P=1/2^+) Z^+(1540) resonance with a width of 5 MeV or more on the K+N (I=0) elastic cross section and on the P01 phase shift is examined within the KN meson-exchange model of the Juelich group. It is shown that the rather strong enhancement of the cross section caused by the presence of a Z^+ with the above properties is not compatible with the existing empirical information on KN scattering. Only a much narrower Z^+ state could be reconciled with the existing data -- or, alternatively, the Z^+ state must lie at an energy much closer to the KN threshold.Comment: 9 pages, RevTeX, 3 eps figure

    Pentaquark Masses in Chiral Perturbation Theory

    Full text link
    Heavy baryon chiral perturbation theory for pentaquarks is applied beyond leading order. The mass splitting in the pentaquark anti-decuplet is calculated up to NNLO. An expansion in the coupling of pentaquarks to non-exotic baryons simplifies calculations and makes the pentaquark masses insensitive to the pentaquark-nucleon mass difference. The possibility of determining coupling constants in the chiral Lagrangian on the lattice is discussed. Both positive and negative parities are considered.Comment: 11 pages; reference added, minor changes in wordin

    Diquarks and Exotic Spectroscopy

    Full text link
    We propose that the recently discovered \Theta baryon is a bound state of four quarks and an antiquark, containing two highly correlated ud-pairs. If so, the \Theta baryon has positive parity, and it lies in an near-ideally mixed SU(3)_{f} \mathbf{\bar{10}}_{f} oplus \mathbf{8}_{f}. The Roper resonance and the P_{11}(1710) fit naturally into this classification. We predict an isospin 3/2 multiplet of \Xi's (S=-2) with J^{\Pi}=\half^{+} around 1750 MeV. A search for manifestly exotic \Xi^{+} and \Xi^{--} in this mass range could provide a sharp test of our proposal. We predict that charm and bottom analogues of the \Theta baryon are stable against strong decays.Comment: 5 pages, 2 figures, revtex 4, minor corrections and revisions for journal publicatio

    Observation of a baryon resonance with positive strangeness in K+ collisions with Xe nuclei

    Full text link
    The status of our investigation of low-energy K+K^+Xe collisions in the Xenon bubble chamber DIANA is reported. In the charge-exchange reaction K+XeK0pXeK^+Xe \to K^0 p Xe' the spectrum of K0pK^0 p effective mass shows a resonant enhancement with M=1539±2M = 1539 \pm 2 MeV/c2^2 and Γ9MeV/c\Gamma \le 9 MeV/c^2.Thestatisticalsignificanceoftheenhancementisnear. The statistical significance of the enhancement is near 4.4\sigma$. The mass and width of the observed resonance are consistent with expectations for the lightest member of the anti-decuplet of exotic pentaquark baryons, as predicted in the framework of the chiral soliton model.Comment: 9 pages, 4 figure

    Small size pentaquark width: calculation in QCD sum rules

    Get PDF
    The pentaquark width is calculated in QCD sum rules. The higher dimension operators contribution is accounted. It is shown, that ΓΘ\Gamma_{\Theta} should be very small, less than 1Mev1Mev.Comment: 10 peges, 7 figure

    Baryon Exotics in the Quark Model, the Skyrme Model and QCD

    Full text link
    We identify the quantum numbers of baryon exotics in the Quark Model, the Skyrme Model and QCD, and show that they agree for arbitrary colors and flavors. We define exoticness, E, which can be used to classify the states. The exotic baryons include the recently discovered qqqq qbar pentaquarks (E=1), as well as exotic baryons with additional q qbar pairs (E >=1). The mass formula for non-exotic and exotic baryons is given as an expansion in 1/N, and allows one to relate the moment of inertia of the Skyrme soliton to the mass of a constituent quark

    Experimental search for radiative decays of the pentaquark baryon \Theta^+(1540)

    Full text link
    The data on the reactions K^+Xe --> K^0 \gamma X and K^+Xe --> K^+ \gamma X, obtained with the bubble chamber DIANA, have been analyzed for possible radiative decays of the \Theta^+(1540) baryon: \Theta^+ --> K^0 p \gamma and \Theta^+ --> K^+ n \gamma. No signals have been observed, and we derive the upper limits \Gamma(\Theta^+ --> K^0 p \gamma) / \Gamma(\Theta^+ --> K^0 p) < 0.032 and \Gamma(\Theta^+ --> K^+ n \gamma) / \Gamma(\Theta^+ --> K^+ n) < 0.041 which, using our previous measurement of \Gamma(\Theta^+ --> KN) = (0.39+-0.10) MeV, translate to \Gamma(\Theta^+ --> K^0 p \gamma) < 8 keV and \Gamma(\Theta^+ --> K^+ n \gamma) < 11 keV at 90% confidence level. We have also measured the cross sections of K^+ -induced reactions involving emission of a neutral pion: \sigma(K^+n --> K^0 p \pi^0) = (68+-18) \mub and \sigma(K^+N --> K^+ N \pi^0) = (30+-8) \mub for incident K^+ momentum of 640 MeV.Comment: 8 page
    corecore