3 research outputs found

    CRISPR-Cas9 : a promising genome editing therapeutic tool for Alzheimer’s disease : a narrative review

    Get PDF
    Alzheimer’s disease (AD) is a chronic and irreversible neurodegenerative disorder characterized by cognitive deficiency and development of amyloid-β (Aβ) plaques and neurofibrillary tangles, comprising hyperphosphorylated tau. The number of patients with AD is alarmingly increasing worldwide; currently, at least 50 million people are thought to be living with AD. The mutations or alterations in amyloid-β precursor protein (APP), presenilin-1 (PSEN1), or presenilin-2 (PSEN2) genes are known to be associated with the pathophysiology of AD. Effective medication for AD is still elusive and many gene-targeted clinical trials have failed to meet the expected efficiency standards. The genome editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 has been emerging as a powerful technology to correct anomalous genetic functions and is now widely applied to the study of AD. This simple yet powerful tool for editing genes showed the huge potential to correct the unwanted mutations in AD-associated genes such as APP, PSEN1, and PSEN2. So, it has opened a new door for the development of empirical AD models, diagnostic approaches, and therapeutic lines in studying the complexity of the nervous system ranging from different cell types (in vitro) to animals (in vivo). This review was undertaken to study the related mechanisms and likely applications of CRISPR-Cas9 as an effective therapeutic tool in treating AD

    Computational prediction of active sites and ligands in different AHL quorum quenching lactonases and acylases

    No full text
    With the emergence of multidrug-resistant ‘superbug’, conventional treatments become obsolete. Quorum quenching (QQ), enzyme-dependent alteration of quorum sensing (QS), is now considered as a promising antimicrobial therapy because of its potentiality to impede virulence gene expression without resulting in growth inhibition and antibiotic resistance. In our study, we intended to compare between two major QQ enzyme groups (i.e., AHL lactonases and AHL acylases) in terms of their structural and functional aspects. The amino acid composition-based principal component analysis (PCA) suggested that probably there is no structural and functional overlapping between the two groups of enzymes as well as within the lactonase enzymes but the acylases may functionally be affected by one another. In subcellular localization analysis, we also found that most lactonases are cytoplasmic while acylases are periplasmic. Investigation on the secondary structural features showed random coil dominates over α-helix and β-sheet in all evaluated enzymes. For structural comparison, the tertiary structures of the selected proteins were modelled and submitted to the PMDB database (Accession ID: PM0081007 to PM0081018). Interestingly, sequence alignment revealed the presence of several conserved domains important for functions in both protein groups. In addition, three amino acid residues, namely aspartic acid, histidine, and isoleucine, were common in the active sites of all protein models while most frequent ligands were found to be 3C7, FEO, and PAC. Importantly, binding interactions of predicted ligands were similar to that of native QS signal molecules. Furthermore, hydrogen bonds analysis suggested six proteins are more stable than others. We believe that the knowledge of this comparative study could be useful for further research in the development of QS-based universal antibacterial strategies
    corecore