16 research outputs found
Decreased lung fibroblast growth factor 18 and elastin in human congenital diaphragmatic hernia and animal models.
International audienceRATIONALE: Lung hypoplasia in congenital diaphragmatic hernia (CDH) seems to involve impaired alveolar septation. We hypothesized that disturbed deposition of elastin and expression of fibroblast growth factor 18 (FGF18), an elastogenesis stimulus, occurs in CDH. OBJECTIVES: To document FGF18 and elastin in human CDH and ovine surgical and rat nitrofen models and to use models to evaluate the benefit of treatments. METHODS: Human CDH and control lungs were collected post mortem. Diaphragmatic hernia was created in sheep at 85 days; fetal lungs were collected at 139 days (term = 145 days). Pregnant rats received nitrofen at 12 days; fetal lungs were collected at 21 days (term = 22 days). Some of the sheep fetuses with hernia underwent tracheal occlusion (TO); some of the nitrofen-treated pregnant rats received vitamin A. Both treatments are known to promote lung growth. MEASUREMENTS AND MAIN RESULTS: Coincidental with the onset of secondary septation, FGF18 protein increased threefold in control human lungs, which failed to occur in CDH. FGF18 labeling was found in interstitial cells of septa. Elastin staining demonstrated poor septation and markedly decreased elastin density in CDH lungs. Consistently, lung FGF18 transcripts were diminished 60 and 83% by CDH in sheep and rats, respectively, and elastin density and expression were diminished. TO and vitamin A restored FGF18 and elastin expression in sheep and rats, respectively. TO restored elastin density. CONCLUSIONS: Impaired septation in CDH is associated with decreased FGF18 expression and elastic fiber deposition. Simultaneous correction of FGF18 and elastin defects by TO and vitamin A suggests that defective elastogenesis may result, at least partly, from FGF18 deficiency
Effects of vascular endothelial growth factor on isolated fetal alveolar type II cells
International audiencePrevious investigations gained from in vivo or lung explant studies suggested that VEGF is an autocrine proliferation and maturation factor for developing alveolar type II cells. The objective of this work was to determine whether VEGF exerted its growth and maturation effects directly on isolated type II cells. These were isolated from 19-day fetal rat lung and cultured in defined medium. The presence of VEGF receptor-2 was assessed in cultured cells at the pre- and posttranslational levels. Recombinant VEGF(165), formerly found to be active on lung explants, failed to enhance type II cell proliferation estimated by thymidine and 5-bromo-2'-deoxy-uridine incorporation. It increased choline incorporation in saturated phosphatidylcholine by 27% but did not increase phospholipid surfactant pool size. VEGF (100 ng/ml) left unchanged the transcript level of surfactant proteins (SP)-A, SP-C, and SP-D but increased SP-B transcripts to four times the control steady-state level. VEGF slightly retarded, but did not prevent, the in vitro transdifferentiation of type II into type I cells, as assessed by immunolabeling of the type I cell marker T1alpha. We conclude that, with the exception of SP-B expression, which appears to be controlled directly, the previously observed effects of this VEGF isoform on type II cells are likely to be exerted indirectly through reciprocal paracrine interactions involving other lung cell types
Contribution of the angiopoietin/Tie2 pathway to pulmonary artery smooth muscle hyperplasia in idiopathic pulmonary hypertension
info:eu-repo/semantics/nonPublishe
Increased expression of Tie2 receptor in idiopathic pulmonary hypertension. Consequences on endothelium-mediated smooth muscle hyperplasia
info:eu-repo/semantics/nonPublishe