569 research outputs found
Experimental and numerical validation of active flaps for wind turbine blades
An industrial active flap concept for wind turbine rotor blades is validated numerically by means of CFD, as well as experimentally in a wind tunnel environment. This paper presents the numerical and experimental results, as well as a discussion regarding the testing of airfoils equipped with active flaps with a highly loaded aft portion. A conceptual implementation for an offshore wind turbine and the potential for load reduction is shown by means of aeroelastic calculations. The work presented herein is conducted within the frame of the Induflap2 project and is partially funded by the Danish funding board EUDP
Association between serum secretory phospholipase A2 and risk of ischaemic stroke
Background and purpose: Previous literature has demonstrated an association between high serum levels of type II secretory phospholipase A2 (sPLA2) concentration and an increased risk of coronary artery disease. However, such association has not been established in terms of ischaemic stroke risk. The aim was to evaluate the association between both sPLA2 concentration and activity as continuous variables with risk of future ischaemic stroke. /
Methods: A nested case–control study was conducted using data from the European Prospective Investigation into Cancer—Norfolk study. Cases (n = 145) in the current study were participants who developed ischaemic stroke during follow-up, with controls (n = 290) matched in a 2:1 ratio based on age and sex. Statistical analyses were performed using SPSS (version 25.0) software. Logistic regression was used to determine odds ratios (OR) and corresponding 95% confidence intervals (95% CIs) for ischaemic stroke. /
Results: After adjusting for a wide array of cardiovascular confounders, sPLA2 activity was found to be associated with an increased risk of ischaemic stroke using both multiple imputations with chained equations and complete case analysis: OR 1.20 (95% CI 1.01–1.43) and OR 1.23 (95% CI 1.01−1.49), respectively. However, sPLA2 concentration was not found to be associated with increased risk of ischaemic stroke. /
Conclusions: The activity of sPLA2, but not sPLA2 concentration, is associated with an increased risk of future ischaemic stroke. This finding may be significant in risk group stratification, allowing targeted prophylactic treatment, or the development of novel therapeutic agents
Infrared spectroscopy of phase transitions in the lowest Landau levels of bilayer graphene
We perform infrared magneto-spectroscopy of Landau level (LL) transitions in
dual-gated bilayer graphene. At when the zeroth LL (octet) is filled,
two resonances are observed indicating the opening of a gap. At when
the octet is half-filled, multiple resonances are found to disperse
non-monotonically with increasing displacement field, , perpendicular to the
sheet, showing a phase transition at modest displacement fields to the
layer-polarized state with a gap that opens linearly in . When and
is varied, resonances at show an electron-hole asymmetry with
multiple line splittings as the octet is progressively filled. Broadly these
data show good agreement with predictions from a mean-field Hartree-Fock
calculation, but only by accounting for multiple tight-binding terms in a
four-band model of bilayer graphene that also incorporates valley interaction
anisotropy. Our results are consistent with the presence of a canted
anti-ferromagnet (CAFM) ground state at , and imply the existence of
intermediate phases in the transition from the CAFM to the layer-polarized
regime
Microscopic Polarization in Bilayer Graphene
Bilayer graphene has drawn significant attention due to the opening of a band
gap in its low energy electronic spectrum, which offers a promising route to
electronic applications. The gap can be either tunable through an external
electric field or spontaneously formed through an interaction-induced symmetry
breaking. Our scanning tunneling measurements reveal the microscopic nature of
the bilayer gap to be very different from what is observed in previous
macroscopic measurements or expected from current theoretical models. The
potential difference between the layers, which is proportional to charge
imbalance and determines the gap value, shows strong dependence on the disorder
potential, varying spatially in both magnitude and sign on a microscopic level.
Furthermore, the gap does not vanish at small charge densities. Additional
interaction-induced effects are observed in a magnetic field with the opening
of a subgap when the zero orbital Landau level is placed at the Fermi energy
The nature of localization in graphene under quantum Hall conditions
Particle localization is an essential ingredient in quantum Hall physics
[1,2]. In conventional high mobility two-dimensional electron systems Coulomb
interactions were shown to compete with disorder and to play a central role in
particle localization [3]. Here we address the nature of localization in
graphene where the carrier mobility, quantifying the disorder, is two to four
orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density
of states and the localized state spectrum of a graphene flake in the quantum
Hall regime with a scanning single electron transistor [11]. Our microscopic
approach provides direct insight into the nature of localization. Surprisingly,
despite strong disorder, our findings indicate that localization in graphene is
not dominated by single particle physics, but rather by a competition between
the underlying disorder potential and the repulsive Coulomb interaction
responsible for screening.Comment: 18 pages, including 5 figure
Observation of Electron-Hole Puddles in Graphene Using a Scanning Single Electron Transistor
The electronic density of states of graphene is equivalent to that of
relativistic electrons. In the absence of disorder or external doping the Fermi
energy lies at the Dirac point where the density of states vanishes. Although
transport measurements at high carrier densities indicate rather high
mobilities, many questions pertaining to disorder remain unanswered. In
particular, it has been argued theoretically, that when the average carrier
density is zero, the inescapable presence of disorder will lead to electron and
hole puddles with equal probability. In this work, we use a scanning single
electron transistor to image the carrier density landscape of graphene in the
vicinity of the neutrality point. Our results clearly show the electron-hole
puddles expected theoretically. In addition, our measurement technique enables
to determine locally the density of states in graphene. In contrast to
previously studied massive two dimensional electron systems, the kinetic
contribution to the density of states accounts quantitatively for the measured
signal. Our results suggests that exchange and correlation effects are either
weak or have canceling contributions.Comment: 13 pages, 5 figure
Spin and valley quantum Hall ferromagnetism in graphene
In a graphene Landau level (LL), strong Coulomb interactions and the fourfold
spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At
partial filling, exchange interactions can spontaneously break this symmetry,
manifesting as additional integer quantum Hall plateaus outside the normal
sequence. Here we report the observation of a large number of these quantum
Hall isospin ferromagnetic (QHIFM) states, which we classify according to their
real spin structure using temperature-dependent tilted field magnetotransport.
The large measured activation gaps confirm the Coulomb origin of the broken
symmetry states, but the order is strongly dependent on LL index. In the high
energy LLs, the Zeeman effect is the dominant aligning field, leading to real
spin ferromagnets with Skyrmionic excitations at half filling, whereas in the
`relativistic' zero energy LL, lattice scale anisotropies drive the system to a
spin unpolarized state, likely a charge- or spin-density wave.Comment: Supplementary information available at http://pico.phys.columbia.ed
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
- …