41,985 research outputs found
Ionized polycyclic aromatic hydrocarbons in space
The mid-infrared spectrum of a continuously increasing number of stellar objects, planetary and reflection nebulae, H-II regions and extragalactic sources show a distinctive set of broad emission features at 3.3, 3.4, 6.2, 7.7, 8.6, and 11.3 micron known collectively as the unidentified infrared emission bands. A model is summarized in which the bands arise from positively charged polycyclic hydrocarbons (PAH's) on the basis of their low ionization potential and the excellent agreement between the emission bands and laboratory spectra of auto exhaust which contains these types of molecules. The proposed presence of PAHs in such a variety of objects points to their presence in the interstellar medium. Out of a previously published collection of solid state PAH radical cation spectra five were selected on the basis of the unique thermodynamic stability of their carrier and compared directly to the wavelengths of the DIB's. Although the match seems quite favorable, strongly suggesting that PAH radicals are the long sought after carrier of the diffuse interstellar absorption bands, much laboratory work must be done to test this hypothesis
Science and Values
This short paper, written for a wide audience, introduces "science and values" topics as they have arisen in the context of eugenics. The paper especially focuses on the context of 20th century eugenics in western Canada, where eugenic legislation in two provinces was not repealed until the 1970s and thousands of people were sterilized without their consent. A framework for understanding science-value relationships within this context is discussed, and so too is recent relevant work in philosophy of science
b-Hadron Physics at LEP
A personal overview of the current status of physics results from LEP using
b-hadrons is presented. Emphasis is placed on those areas where analyses are
not yet finalised and there remains significant activity. Results are presented
in the areas of b-quark fragmentation, b-hadron lifetimes, charm counting in
b-decays and Vcb.Comment: 4 pages TEX, 4 figure
A survey of business concerns' attitude concerning sponsorship of educational television programs
Thesis (Ed.M.)--Boston Universit
A survey of business concerns' attitude concerning sponsorship of educational television programs
Thesis (Ed.M.)--Boston Universit
Infrared absorption and emission characteristics of interstellar PAHs
The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms are responsible for the emission
The hydrogen coverage of interstellar PAHs
The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments
- …