21,043 research outputs found
BSAURUS- A Package For Inclusive B-Reconstruction in DELPHI
BSAURUS is a software package for the inclusive reconstruction of B-hadrons
in Z-decay events taken by the DELPHI detector at LEP. The BSAURUS goal is to
reconstruct B-decays, by making use of as many properties of b-jets as
possible, with high efficiency and good purity. This is achieved by exploiting
the capabilities of the DELPHI detector to their extreme, applying wherever
possible physics knowledge about B production and decays and combining
different information sources with modern tools- mainly artificial neural
networks. This note provides a reference of how BSAURUS outputs are formed, how
to access them within the DELPHI framework, and the physics performance one can
expect.Comment: 52 pages, 24 figures, added author Z.
The B Neutrino Spectrum
Knowledge of the energy spectrum of B neutrinos is an important
ingredient for interpreting experiments that detect energetic neutrinos from
the Sun. The neutrino spectrum deviates from the allowed approximation because
of the broad alpha-unstable Be final state and recoil order corrections to
the beta decay. We have measured the total energy of the alpha particles
emitted following the beta decay of B. The measured spectrum is
inconsistent with some previous measurements, in particular with a recent
experiment of comparable precision. The beta decay strength function for the
transition from B to the accessible excitation energies in Be is fit to
the alpha energy spectrum using the R-matrix approach. Both the positron and
neutrino energy spectra, corrected for recoil order effects, are constructed
from the strength function. The positron spectrum is in good agreement with a
previous direct measurement. The neutrino spectrum disagrees with previous
experiments, particularly for neutrino energies above 12 MeV.Comment: 15 pages, 13 figures, 4 tables, submitted to Phys. Rev. C, typos
correcte
Producing more rice with less water from irrigated systems
Irrigation management / Water use efficiency / Crop production / Water requirements / Water balance / Rice / Water distribution / Irrigated farming / Productivity / On-farm research / Irrigation scheduling / Groundwater / Conjunctive use / Rehabilitation / Modernization / Farmer participation / Farming systems / Irrigation systems / Crop-based irrigation / Asia / Philippines / Sri Lanka / Bangladesh / China / Malaysia / USA
Application of energy and angular momentum balance to gravitational radiation reaction for binary systems with spin-orbit coupling
We study gravitational radiation reaction in the equations of motion for
binary systems with spin-orbit coupling, at order (v/c)^7 beyond Newtonian
gravity, or O(v/c)^2 beyond the leading radiation reaction effects for
non-spinning bodies. We use expressions for the energy and angular momentum
flux at infinity that include spin-orbit corrections, together with an
assumption of energy and angular momentum balance, to derive equations of
motion that are valid for general orbits and for a class of coordinate gauges.
We show that the equations of motion are compatible with those derived earlier
by a direct calculation.Comment: 12 pages, submitted to General Relativity and Gravitatio
Does gravity cause load-bearing bridges in colloidal and granular systems?
We study structures which can bear loads, "bridges", in particulate packings. To investigate the relationship between bridges and gravity, we experimentally determine bridge statistics in colloidal packings. We vary the effective magnitude and direction of gravity, volume fraction, and interactions, and find that the bridge size distributions depend only on the mean number of neighbors. We identify a universal distribution, in agreement with simulation results for granulars, suggesting that applied loads merely exploit preexisting bridges, which are inherent in dense packings
Nodeless superconductivity in the cage-type superconductor Sc5Ru6Sn18 with preserved time-reversal symmetry
We report the single-crystal synthesis and detailed investigations of the
cage-type superconductor Sc5Ru6Sn18, using powder x-ray diffraction (XRD),
magnetization, specific-heat and muon-spin relaxation (muSR) measurements.
Sc5Ru6Sn18 crystallizes in a tetragonal structure (space group I41/acd) with
the lattice parameters a = 1.387(3) nm and c = 2.641(5) nm. Both DC and AC
magnetization measurements prove the type-II superconductivity in Sc5Ru6Sn18
with Tc = 3.5(1) K, a lower critical field H_c1 (0) = 157(9) Oe and an upper
critical field, H_c2 (0) = 26(1) kOe. The zero-field electronic specific-heat
data are well fitted using a single-gap BCS model, with superconducting gap =
0.64(1) meV. The Sommerfeld constant varies linearly with the applied magnetic
field, indicating s-wave superconductivity in Sc5Ru6Sn18. Specific-heat and
transverse-field (TF) muSR measurements reveal that Sc5Ru6Sn18 is a
superconductor with strong electron-phonon coupling, with TF-muSR also
suggesting the single-gap s-wave character of the superconductivity.
Furthermore, zero-field muSR measurements do not detect spontaneous magnetic
fields below Tc, hence implying that time-reversal symmetry is preserved in
Sc5Ru6Sn18.Comment: 23 pages, 11 figure
Coalescence of Two Spinning Black Holes: An Effective One-Body Approach
We generalize to the case of spinning black holes a recently introduced
``effective one-body'' approach to the general relativistic dynamics of binary
systems. The combination of the effective one-body approach, and of a Pad\'e
definition of some crucial effective radial functions, is shown to define a
dynamics with much improved post-Newtonian convergence properties, even for
black hole separations of the order of . We discuss the approximate
existence of a two-parameter family of ``spherical orbits'' (with constant
radius), and, of a corresponding one-parameter family of ``last stable
spherical orbits'' (LSSO). These orbits are of special interest for forthcoming
LIGO/VIRGO/GEO gravitational wave observations. It is argued that for most (but
not all) of the parameter space of two spinning holes the effective one-body
approach gives a reliable analytical tool for describing the dynamics of the
last orbits before coalescence. This tool predicts, in a quantitative way, how
certain spin orientations increase the binding energy of the LSSO. This leads
to a detection bias, in LIGO/VIRGO/GEO observations, favouring spinning black
hole systems, and makes it urgent to complete the conservative effective
one-body dynamics given here by adding (resummed) radiation reaction effects,
and by constructing gravitational waveform templates that include spin effects.
Finally, our approach predicts that the spin of the final hole formed by the
coalescence of two arbitrarily spinning holes never approaches extremality.Comment: 26 pages, two eps figures, accepted in Phys. Rev. D, minor updating
of the text, clarifications added and inclusion of a few new reference
Capturing Hiproofs in HOL Light
Hierarchical proof trees (hiproofs for short) add structure to ordinary proof
trees, by allowing portions of trees to be hierarchically nested. The
additional structure can be used to abstract away from details, or to label
particular portions to explain their purpose. In this paper we present two
complementary methods for capturing hiproofs in HOL Light, along with a tool to
produce web-based visualisations. The first method uses tactic recording, by
modifying tactics to record their arguments and construct a hierarchical tree;
this allows a tactic proof script to be modified. The second method uses proof
recording, which extends the HOL Light kernel to record hierachical proof trees
alongside theorems. This method is less invasive, but requires care to manage
the size of the recorded objects. We have implemented both methods, resulting
in two systems: Tactician and HipCam
The Iliad’s big swoon: a case of innovation within the epic tradition
In book 5 of the Iliad Sarpedon suffers so greatly from a wound that his ‘‘ψυχή leaves him’. Rather than dying, however, Sarpedon lives to fight another day. This paper investigates the phrase τὸν δὲ λίπε ψυχή in extant archaic Greek poetry to gain a sense of its traditional referentiality and better assess the meaning of Sarpedon’s swoon. Finding that all other instances of the ψυχή leaving the body signify death, it suggests that the Iliad exploits a traditional unit of utterance to flag up the importance of Sarpedon to this version of the Troy story
- …