191 research outputs found

    Fecal shedding and tissue infections demonstrate transmission of Mycobacterium avium subsp. paratuberculosis in group-housed dairy calves

    Get PDF
    International audienceAbstractCurrent Johne’s disease control programs primarily focus on decreasing transmission of Mycobacterium avium subsp. paratuberculosis (MAP) from infectious adult cows to susceptible calves. However, potential transmission between calves is largely overlooked. The objective was to determine the extent of MAP infection in calves contact-exposed to infectious penmates. Thirty-two newborn Holstein–Friesian calves were grouped into 7 experimental groups of 4, consisting of 2 inoculated (IN) calves, and 2 contact-exposed (CE) calves, and 1 control pen with 4 non-exposed calves. Calves were group housed for 3 months, with fecal samples were collected 3 times per week, blood and environmental samples weekly, and tissue samples at the end of the trial. The IN calves exited the trial after 3 months of group housing, whereas CE calves were individually housed for an additional 3 months before euthanasia. Control calves were group-housed for the entire trial. All CE and IN calves had MAP-positive fecal samples during the period of group housing; however, fecal shedding had ceased at time of individual housing. All IN calves had MAP-positive tissue samples at necropsy, and 7 (50%) of the CE had positive tissue samples. None of the calves had a humoral immune response, whereas INF-γ responses were detected in all IN calves and 5 (36%) CE calves. In conclusion, new MAP infections occurred due to exposure of infectious penmates to contact calves. Therefore, calf-to-calf transmission is a potential route of uncontrolled transmission on cattle farms

    Quantifying transmission of Mycobacterium avium subsp. paratuberculosis among group-housed dairy calves

    Get PDF
    International audienceAbstractJohne’s disease (JD) is a chronic enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), with control primarily aimed at preventing new infections among calves. The aim of the current study was to quantify calf-to-calf transmission of MAP among penmates in an experimental trial. Newborn Holstein bull calves (n = 32) were allocated into pens of 4, with 2 inoculated (IN) calves and 2 calves that were contact exposed (CE). Calves were group-housed for 3 months, with frequent collection of fecal and blood samples and tissue collection after euthanasia. The basic reproduction ratio (R0) was estimated using a final size (FS) model with a susceptible-infected model, based on INF-γ ELISA and tissue culture followed by qPCR. In addition, the transmission rate parameter (β) for new shedding events was estimated using a general linearized method (GLM) model with a susceptible-infected-susceptible model based on culture, followed by qPCR, of fecal samples collected during group housing. The R0 was derived for IN and CE calves separately, due to a difference in susceptibility, as well as differences in duration of shedding events. Based on the FS model, interferon-γ results from blood samples resulted in a R0IG of 0.90 (0.24, 2.59) and tissue culture resulted in a R0T of 1.36 (0.45, 3.94). Based on the GLM model, the R0 for CE calves to begin shedding (R0CE) was 3.24 (1.14, 7.41). We concluded that transmission of MAP infection between penmates occurred and that transmission among calves may be an important cause of persistent MAP infection on dairy farms that is currently uncontrolled for in current JD control programs

    Prevalence of non-aureus Staphylococcus species causing intramammary infections in Canadian dairy herds

    Get PDF
    Non-aureus staphylococci (NAS), the microorganisms most frequently isolated from bovine milk worldwide, are a heterogeneous group of numerous species. To establish their importance as a group, the distribution of individual species needs to be determined. In the present study, NAS intramammary infection (IMI) was defined as a milk sample containing ≥1,000 cfu/mL in pure or mixed culture that was obtained from a cohort of cows assembled by the Canadian Bovine Mastitis Research Network. Overall, 6,213 (6.3%) of 98,233 quarter-milk samples from 5,149 cows and 20,305 udder quarters were associated with an NAS IMI. Of the 6,213 phenotypically identified NAS isolates, 5,509 (89%) were stored by the Canadian Bovine Mastitis Research Network Mastitis Pathogen Collection and characterized using partial sequencing of the rpoB housekeeping gene, confirming 5,434 isolates as NAS. Prevalence of each NAS species IMI was estimated using Bayesian models, with presence of a specific NAS species as the outcome. Overall quarter-level NAS IMI prevalence was 26%. The most prevalent species causing IMI were Staphylococcus chromogenes (13%), Staphylococcus simulans (4%), Staphylococcus haemolyticus (3%), Staphylococcus xylosus (2%), and Staphylococcus epidermidis (1%). The prevalence of NAS IMI as a group was highest in first-parity heifers and was evenly distributed throughout cows in parities ≥2. The IMI prevalence of some species such as S. chromogenes, S. simulans, and S. epidermidis differed among parities. Overall prevalence of NAS IMI was 35% at calving, decreased over the next 10 d, and then gradually increased until the end of lactation. The prevalence of S. chromogenes, Staphylococcus gallinarum, Staphylococcus cohnii, and Staphylococcus capitis was highest at calving, whereas the prevalence of S. chromogenes, S. haemolyticus, S. xylosus, and S. cohnii increased during lactation. Although the overall prevalence of NAS IMI was similar across barn types, the prevalence of S. simulans, S. xylosus, S. cohnii, Staphylococcus saprophyticus, S. capitis, and Staphylococcus arlettae IMI was higher in tie-stall barns; the prevalence of S. epidermidis IMI was lowest; and the prevalence of S. chromogenes and Staphylococcus sciuri IMI was highest in bedded-pack barns. Staphylococcus simulans, S. epidermidis, S. xylosus, and S. cohnii IMI were more prevalent in herds with intermediate to high bulk milk somatic cell count (BMSCC) and S. haemolyticus IMI was more prevalent in herds with high BMSCC, whereas other common NAS species IMI were equally prevalent in all 3 BMSCC categories. Distribution of NAS species IMI differed among the 4 regions of Canada. In conclusion, distribution differed considerably among NAS species IMI; therefore, accurate identification (species level) is essential for studying NAS epidemiology

    Omics Multi-Layers Networks Provide Novel Mechanistic and Functional Insights Into Fat Storage and Lipid Metabolism in Poultry

    Get PDF
    Fatty acid metabolism in poultry has a major impact on production and disease resistance traits. According to the high rate of interactions between lipid metabolism and its regulating properties, a holistic approach is necessary. To study omics multilayers of adipose tissue and identification of genes and miRNAs involved in fat metabolism, storage and endocrine signaling pathways in two groups of broiler chickens with high and low abdominal fat, as well as high-throughput techniques, were used. The gene–miRNA interacting bipartite and metabolic-signaling networks were reconstructed using their interactions. In the analysis of microarray and RNA-Seq data, 1,835 genes were detected by comparing the identified genes with significant expression differences (p.adjust < 0.01, fold change ≥ 2 and ≤ −2). Then, by comparing between different data sets, 34 genes and 19 miRNAs were detected as common and main nodes. A literature mining approach was used, and seven genes were identified and added to the common gene set. Module finding revealed three important and functional modules, which were involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, biosynthesis of unsaturated fatty acids, Alzheimer’s disease metabolic pathway, adipocytokine, insulin, PI3K–Akt, mTOR, and AMPK signaling pathway. This approach revealed a new insight to better understand the biological processes associated with adipose tissue

    Limitations of variable number of tandem repeat typing identified through whole genome sequencing of Mycobacterium avium subsp. paratuberculosis on a national and herd level

    Get PDF
    Background: Mycobacterium avium subsp. paratuberculosis (MAP), the causative bacterium of Johne’s disease in dairy cattle, is widespread in the Canadian dairy industry and has significant economic and animal welfare implications. An understanding of the population dynamics of MAP can be used to identify introduction events, improve control efforts and target transmission pathways, although this requires an adequate understanding of MAP diversity and distribution between herds and across the country. Whole genome sequencing (WGS) offers a detailed assessment of the SNP-level diversity and genetic relationship of isolates, whereas several molecular typing techniques used to investigate the molecular epidemiology of MAP, such as variable number of tandem repeat (VNTR) typing, target relatively unstable repetitive elements in the genome that may be too unpredictable to draw accurate conclusions. The objective of this study was to evaluate the diversity of bovine MAP isolates in Canadian dairy herds using WGS and then determine if VNTR typing can distinguish truly related and unrelated isolates.&lt;p&gt;&lt;/p&gt; Results: Phylogenetic analysis based on 3,039 SNPs identified through WGS of 124 MAP isolates identified eight genetically distinct subtypes in dairy herds from seven Canadian provinces, with the dominant type including over 80% of MAP isolates. VNTR typing of 527 MAP isolates identified 12 types, including “bison type” isolates, from seven different herds. At a national level, MAP isolates differed from each other by 1–2 to 239–240 SNPs, regardless of whether they belonged to the same or different VNTR types. A herd-level analysis of MAP isolates demonstrated that VNTR typing may both over-estimate and under-estimate the relatedness of MAP isolates found within a single herd.&lt;p&gt;&lt;/p&gt; Conclusions: The presence of multiple MAP subtypes in Canada suggests multiple introductions into the country including what has now become one dominant type, an important finding for Johne’s disease control. VNTR typing often failed to identify closely and distantly related isolates, limiting the applicability of using this typing scheme to study the molecular epidemiology of MAP at a national and herd-level.&lt;p&gt;&lt;/p&gt

    A review of paratuberculosis in dairy herds — Part 1: Epidemiology

    Get PDF
    Bovine paratuberculosis is a chronic infectious disease of cattle caused by Mycobacterium avium subspecies paratuberculosis (MAP). This is the first in a two-part review of the epidemiology and control of paratuberculosis in dairy herds. Paratuberculosis was originally described in 1895 and is now considered endemic among farmed cattle worldwide. MAP has been isolated from a wide range of non-ruminant wildlife as well as humans and non-human primates. In dairy herds, MAP is assumed to be introduced predominantly through the purchase of infected stock with additional factors modulating the risk of persistence or fade-out once an infected animal is introduced. Faecal shedding may vary widely between individuals and recent modelling work has shed some light on the role of super-shedding animals in the transmission of MAP within herds. Recent experimental work has revisited many of the assumptions around age susceptibility, faecal shedding in calves and calf-to-calf transmission. Further efforts to elucidate the relative contributions of different transmission routes to the dissemination of infection in endemic herds will aid in the prioritisation of efforts for control on farm

    Dogs as Sources and Sentinels of Parasites in Humans and Wildlife, Northern Canada

    Get PDF
    A minimum of 11 genera of parasites, including 7 known or suspected to cause zoonoses, were detected in dogs in 2 northern Canadian communities. Dogs in remote settlements receive minimal veterinary care and may serve as sources and sentinels for parasites in persons and wildlife, and as parasite bridges between wildlife and humans

    A review of paratuberculosis in dairy herds — Part 2: On-farm control

    Get PDF
    Bovine paratuberculosis is a chronic infectious disease of cattle, caused by Mycobacterium avium subspecies paratuberculosis (MAP). This is the second in a two-part review of the epidemiology and control of paratuberculosis in dairy herds. Several negative production effects associated with MAP infection have been described, but perhaps the most significant concern in relation to the importance of paratuberculosis as a disease of dairy cattle is the potential link with Crohn’s disease in humans. Milk is considered a potential transmission route to humans and it is recognised that pasteurisation does not necessarily eliminate the bacterium. Therefore, control must also include reduction of the levels of MAP in bulk milk supplied from dairy farms. There is little field evidence in support of specific control measures, although several studies seem to show a decreased prevalence associated with the implementation of a combined management and test-and-cull programme. Improvements in vaccination efficacy and reduced tuberculosis (TB) test interference may increase uptake of vaccination as a control option. Farmer adoption of best practice recommendations at farm level for the control of endemic diseases can be challenging. Improved understanding of farmer behaviour and decision making will help in developing improved communication strategies which may be more efficacious in affecting behavioural change on farm

    Broad-spectrum infrared thermography for detection of M2 digital dermatitis lesions on hind feet of standing dairy cattle

    Get PDF
    Low-effort, reliable diagnostics of digital dermatitis (DD) are needed, especially for lesions warranting treatment, regardless of milking system or hygienic condition of the feet. The primary aim of this study was to test the association of infrared thermography (IRT) from unwashed hind feet with painful M2 lesions under farm conditions, with lesion detection as ultimate goal. Secondary objectives were to determine the association between IRT from washed feet and M2 lesions, and between IRT from unwashed and washed feet and the presence of any DD lesion. A total of 641 hind feet were given an M-score and IRT images of the plantar pastern were captured. Multivariable logistic regression analyses were done with DD status as dependent variable and maximum infrared temperature (IRTmax), lower leg cleanliness score and locomotion score as independent variables, and farm as fixed effect. To further our understanding of IRTmax within DD status, we divided IRTmax into two groups over the median value of IRTmax in the datasets of unwashed and washed feet, respectively, and repeated the multivariable logistic regression analyses. Higher IRTmax from unwashed hind feet were associated with M2 lesions or DD lesions, in comparison with feet without an M2 lesion or without DD, adjusted odds ratio 1.6 (95% CI 1.2-2.2) and 1.1 (95% CI 1.1-1.2), respectively. Washing of the feet resulted in similar associations. Dichotomization of IRTmax substantially enlarged the 95% CI for the association with feet with M2 lesions indicating that the association becomes less reliable. This makes it unlikely that IRTmax alone can be used for automated detection of feet with an M2 lesion. However, IRTmax can have a role in identifying feet at-risk for compromised foot health that need further examination, and could therefore function as a tool aiding in the automated monitoring of foot health on dairy herds

    Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic

    Get PDF
    BackgroundThe recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. MethodsRNA-Seq data from peripheral blood mononuclear cells (PSPRINGER NATUREs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. ResultsBased on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. ConclusionThis study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic
    corecore