16 research outputs found

    Structure and energetics of Si(111)-(5x2)-Au

    Full text link
    We propose a new structural model for the Si(111)-(5x2)-Au reconstruction. The model incorporates a new experimental value of 0.6 monolayer for the coverage of gold atoms, equivalent to six gold atoms per 5x2 cell. Five main theoretical results, obtained from first-principles total-energy calculations, support the model. (1) In the presence of silicon adatoms the periodicity of the gold rows spontaneously doubles, in agreement with experiment. (2) The dependence of the surface energy on the adatom coverage indicates that a uniformly covered phase is unstable and will phase-separate into empty and covered regions, as observed experimentally. (3) Theoretical scanning tunneling microscopy images are in excellent agreement with experiment. (4) The calculated band structure is consistent with angle-resolved photoemission spectra; analysis of their correspondence allows the straightforward assignment of observed surface states to specific atoms. (5) The calculated activation barrier for diffusion of silicon adatoms along the row direction is in excellent agreement with the experimentally measured barrier.Comment: 11 pages, 7 figures, also available with higher-resolution figures from http://cst-www.nrl.navy.mil/users/erwin/ausi111.v5.pd

    Melting, bubble-like expansion and explosion of superheated plasmonic nanoparticles

    Full text link
    We report on time-resolved coherent diffraction imaging of gas-phase silver nanoparticles, strongly heated via their plasmon resonance. The x-ray diffraction images reveal a broad range of phenomena for different excitation strengths, from simple melting over strong cavitation to explosive disintegration. Molecular dynamics simulations fully reproduce this behavior and show that the heating induces rather similar trajectories through the phase diagram in all cases, with the very different outcomes being due only to whether and where the stability limit of the metastable superheated liquid is crossed.Comment: 17 pages, 8 figures (including supplemental material

    Pulsed Electrical Stimulation Affects Osteoblast Adhesion and Calcium Ion Signaling

    No full text
    An extensive research field in regenerative medicine is electrical stimulation (ES) and its impact on tissue and cells. The mechanism of action of ES, particularly the role of electrical parameters like intensity, frequency, and duration of the electric field, is not yet fully understood. Human MG-63 osteoblasts were electrically stimulated for 10 min with a commercially available multi-channel system (IonOptix). We generated alternating current (AC) electrical fields with a voltage of 1 or 5 V and frequencies of 7.9 or 20 Hz, respectively. To exclude liquid-mediated effects, we characterized the AC-stimulated culture medium. AC stimulation did not change the medium’s pH, temperature, and oxygen content. The H2O2 level was comparable with the unstimulated samples except at 5 V_7.9 Hz, where a significant increase in H2O2 was found within the first 30 min. Pulsed electrical stimulation was beneficial for the process of attachment and initial adhesion of suspended osteoblasts. At the same time, the intracellular Ca2+ level was enhanced and highest for 20 Hz stimulated cells with 1 and 5 V, respectively. In addition, increased Ca2+ mobilization after an additional trigger (ATP) was detected at these parameters. New knowledge was provided on why electrical stimulation contributes to cell activation in bone tissue regeneration

    The Scatman: an approximate method for fast wide-angle scattering simulations

    No full text
    Single-shot coherent diffraction imaging (CDI) is a powerful approach to characterize the structure and dynamics of isolated nanoscale objects such as single viruses, aerosols, nanocrystals and droplets. Using X-ray wavelengths, the diffraction images in CDI experiments usually cover only small scattering angles of a few degrees. These small-angle patterns represent the magnitude of the Fourier transform of the 2D projection of the sample's electron density, which can be reconstructed efficiently but lacks any depth information. In cases where the diffracted signal can be measured up to scattering angles exceeding ∼10°, i.e. in the wide-angle regime, some 3D morphological information of the target is contained in a single-shot diffraction pattern. However, the extraction of the 3D structural information is no longer straightforward and defines the key challenge in wide-angle CDI. So far, the most convenient approach relies on iterative forward fitting of the scattering pattern using scattering simulations. Here the Scatman is presented, an approximate and fast numerical tool for the simulation and iterative fitting of wide-angle scattering images of isolated samples. Furthermore, the open-source software implementation of the Scatman algorithm, PyScatman, is published and described in detail. The Scatman approach, which has already been applied in previous work for forward-fitting-based shape retrieval, adopts the multi-slice Fourier transform method. The effects of optical properties are partially included, yielding quantitative results for small, isolated and weakly interacting samples. PyScatman is capable of computing wide-angle scattering patterns in a few milliseconds even on consumer-level computing hardware, potentially enabling new data analysis schemes for wide-angle coherent diffraction experiments.ISSN:0021-8898ISSN:1600-576

    The Scatman: an approximate method for fast wide-angle scattering simulations

    No full text
    Single-shot Coherent Diffraction Imaging (CDI) is a powerful approach to characterize the structure and dynamics of isolated nanoscale objects such as single viruses, aerosols, nanocrystals or droplets. Using X-ray wavelengths, the diffraction images in CDI experiments usually cover only small scattering angles of few degrees. These small-angle patterns repre sent the magnitude of the Fourier transform of the two-dimensional projec tion of the sample’s electron density, which can be reconstructed efficiently but lacks any depth information. In cases where the diffracted signal can be measured up to scattering angles exceeding ∼ 10 ◦ , i.e. in the wide angle regime, three-dimensional morphological information of the target is contained in a single-shot diffraction pattern. However, the extraction of the 3D structural information is no longer straightforward and defines the key challenge in wide-angle CDI. So far, the most convenient approach relies on iterative forward fitting of the scattering pattern using scatter ing simulations. Here we present the Scatman, an approximate and fast numerical tool for the simulation and iterative fitting of wide-angle scat tering images of isolated samples. Furthermore, we publish and describe in detail our Open Source software implementation of the Scatman algo rithm, PyScatman. The Scatman approach, which was alreadin previous works for forward-fitting-based shape retrieval, adopts the Multi-Slice Fourier Transform method. The effects of optical properties are partially included, yielding quantitative results for weakly scattering samples. PyScatman is capable of computing wide-angle scattering pat terns in few milliseconds even on consumer-level computing hardware. The high computational efficiency of PyScatman enables effective data analysis based on model fitting, thus representing an important step to wards a systematic application of 3D Coherent Diffraction Imaging from single wide-angle diffraction patterns in various scientific communities
    corecore