102 research outputs found

    Plastid retrograde signaling: A developmental perspective

    Get PDF
    Chloroplast activities influence nuclear gene expression, a phenomenon referred to as retrograde signaling. Biogenic retrograde signals have been revealed by changes in nuclear gene expression when chloroplast development is disrupted. Research on biogenic signaling has focused on repression of Photosynthesis Associated Nuclear Genes (PhANGs) but this is just one component of a syndrome involving altered expression of thousands of genes involved in diverse processes, many of which are up-regulated. We discuss evidence for a framework that accounts for most of this syndrome. Disruption of chloroplast biogenesis prevents production of signals required to progress through discrete steps in the program of photosynthetic differentiation, causing retention of juvenile states. As a result, expression of PhANGs and other genes that act late during photosynthetic differentiation is not initiated, while expression of genes that act early is retained. The extent of juvenility, and thus the transcriptome, reflects the disrupted process: lack of plastid translation blocks development very early whereas disruption of photosynthesis without compromising plastid translation blocks development at a later stage. We discuss implications of these and other recent observations for the nature of the plastid-derived signals that regulate photosynthetic differentiation, and the role of GUN1, an enigmatic protein involved in biogenic signaling

    In vivo stabilization of endogenous chloroplast RNAs by customized artificial pentatricopeptide repeat proteins

    Get PDF
    Pentatricopeptide repeat (PPR) proteins are helical repeat-proteins that bind RNA in a modular fashion with a sequence-specificity that can be manipulated by the use of an amino acid code. As such, PPR repeats are promising scaffolds for the design of RNA binding proteins for synthetic biology applications. However, the in vivo functional capabilities of artificial PPR proteins built from consensus PPR motifs are just starting to be explored. Here, we report in vivo functions of an artificial PPR protein, dPPRrbcL, made of consensus PPR motifs that were designed to bind a sequence near the 5′ end of rbcL transcripts in Arabidopsis chloroplasts. We used a functional complementation assay to demonstrate that this protein bound its intended RNA target with specificity in vivo and that it substituted for a natural PPR protein by stabilizing processed rbcL mRNA. We targeted a second protein of analogous design to the petL 5′ UTR, where it substituted for the native stabilizing PPR protein PGR3, albeit inefficiently. These results showed that artificial PPR proteins can be engineered to functionally mimic the class of native PPR proteins that serve as physical barriers against exoribonucleases

    POGs/PlantRBP: a resource for comparative genomics in plants

    Get PDF
    POGs/PlantRBP () is a relational database that integrates data from rice, Arabidopsis, and maize by placing the complete Arabidopsis and rice proteomes and available maize sequences into ‘putative orthologous groups’ (POGs). Annotation efforts will focus on predicted RNA binding proteins (RBPs): i.e. those with known RNA binding domains or otherwise implicated in RNA function. POGs form the heart of the database, and were assigned using a mutual-best-hit-strategy after performing BLAST comparisons of the predicted Arabidopsis and rice proteomes. Each POG entry includes orthologs in Arabidopsis and rice, annotated with domain organization, gene models, phylogenetic trees, and multiple intracellular targeting predictions. A graphical display maps maize sequences on to their most similar rice gene model. The database can be queried using any combination of gene name, accession, domain, and predicted intracellular location, or using BLAST. Useful features of the database include the ability to search for proteins with both a specified domain content and intracellular location, the concurrent display of mutual best hits and phylogenetic trees which facilitates evaluation of POG assignments, the association of maize sequences with POGs, and the display of targeting predictions and domain organization for all POG members, which reveals consistency, or lack thereof, of those predictions

    Protein-mediated protection as the predominant mechanism for defining processed mRNA termini in land plant chloroplasts

    Get PDF
    Most chloroplast mRNAs are processed from larger precursors. Several mechanisms have been proposed to mediate these processing events, including site-specific cleavage and the stalling of exonucleases by RNA structures. A protein barrier mechanism was proposed based on analysis of the pentatricopeptide repeat (PPR) protein PPR10: PPR10 binds two intercistronic regions and impedes 5′- and 3′-exonucleases, resulting in processed RNAs with PPR10 bound at the 5′- or 3′-end. In this study, we provide evidence that protein barriers are the predominant means for defining processed mRNA termini in chloroplasts. First, we map additional RNA termini whose arrangement suggests biogenesis via a PPR10-like mechanism. Second, we show that the PPR protein HCF152 binds to the immediate 5′- or 3′-termini of transcripts that require HCF152 for their accumulation, providing evidence that HCF152 defines RNA termini by blocking exonucleases. Finally, we build on the observation that the PPR10 and HCF152 binding sites accumulate as small chloroplast RNAs to infer binding sites of other PPR proteins. We show that most processed mRNA termini are represented by small RNAs whose sequences are highly conserved. We suggest that each such small RNA is the footprint of a PPR-like protein that protects the adjacent RNA from degradation

    Redesigning photosynthesis to sustainably meet global food and bioenergy demand

    Get PDF
    The world's crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production
    corecore