13 research outputs found

    Tracing exogenous surfactant in vivo in rabbits by the natural variation of 13C

    Get PDF
    BACKGROUND: Respiratory Distress Syndrome (RDS) is a prematurity-related breathing disorder caused by a quantitative deficiency of pulmonary surfactant. Surfactant replacement therapy is effective for RDS newborns, although treatment failure has been reported. The aim of this study is to trace exogenous surfactant by 13C variation and estimate the amount reaching the lungs at different doses of the drug. METHODS: Forty-four surfactant-depleted rabbits were obtained by serial bronchoalveolar lavages (BALs), that were merged into a pool (BAL pool) for each animal. Rabbits were in nasal continuous positive airway pressure and treated with 0, 25, 50, 100 or 200 mg/kg of poractant alfa by InSurE. After 90 min, rabbits were depleted again and a new pool (BAL end experiment) was collected. Disaturated-phosphatidylcholine (DSPC) was measured by gas chromatography. DSPC-Palmitic acid (PA) 13C/12C was analyzed by isotope ratio mass spectrometry. One-way non-parametric ANOVA and post-hoc Dunn's multiple comparison were used to assess differences among experimental groups. RESULTS: Based on DSPC-PA 13C/12C in BAL pool and BAL end experiment, the estimated amount of exogenous surfactant ranged from 61 to 87% in dose-dependent way (p < 0.0001) in animals treated with 25 up to 200 mg/kg. Surfactant administration stimulated endogenous surfactant secretion. The percentage of drug recovered from lungs did not depend on the administered dose and accounted for 31% [24-40] of dose. CONCLUSIONS: We reported a risk-free method to trace exogenous surfactant in vivo. It could be a valuable tool for assessing, alongside the physiological response, the delivery efficiency of surfactant administration techniques

    Surfactant protein B and A concentrations are increased in neonatal pneumonia

    No full text
    BACKGROUND: Term newborns with pneumonia show a reduced pulmonary compliance due to multiple and ill-defined factors. Surfactant proteins' (SPs) changes could have a role in the reduced compliance but the matter is still unsettled. The aim of this study was to clarify the meaning of SPs changes during pneumonia in term newborns. METHODS: In 28 term ventilated newborns, 13 with pneumonia and 15 with no lung disease, we measured SP-B, SP-A, disaturated-phosphatidylcholine (DSPC), and total phospholipids (PL) concentrations in tracheal aspirates at intubation and close to extubation. We also measured DSPC kinetics using (U-(13)C-PA)dipalmitoyl-phosphatidylcholine. RESULTS: At baseline, SP-B, expressed as % of PL, was significantly different between the groups, being 3.5-fold higher in pneumonia than controls. Conversely, SP-A did not vary between the groups. At extubation, SP-B and SP-A concentrations had decreased significantly in newborns with pneumonia, while there was no significant change in controls. DSPC t1/2 was significantly shorter in the pneumonia group (11.8 (5.5-19.8) h vs. 26.6 (19.3-63.6) h, P = 0.011). CONCLUSION: In term newborns with pneumonia, SP-B increases with respect to PL, and DSPC is turned over at a faster rate. Disease's resolution is associated with the restoration of the normal ratio between SP-B and PL
    corecore