324 research outputs found

    Strain imaging using cardiac magnetic resonance

    Get PDF

    Impact of Isolated Tricuspid Valve Repair on Right Ventricular Remodelling in an Adult Congenital Heart Disease Population

    Get PDF
    BackgroundSurgical repair of isolated congenital tricuspid valve (TV) disease is rare with no well-defined indication and outcomes. Moreover, the role of right ventricle (RV) in this context has not yet been investigated.ObjectivesWe sought to assess the impact of congenital TV repair on cardiac remodelling and clinical–functional status and the importance of the RV function in an adult congenital heart disease (ACHD) population.Methods and resultsFrom January 2005 to December 2015, 304 patients underwent TV surgery in our centre. Of these, 27 (ACHD) patients had isolated TV repair. Patients were evaluated with preoperative and postoperative transthoracic echocardiogram. Survival rate has been investigated with a mean clinical follow-up (FU) of 3.7 ± 2.3 years, whereas the mean echocardiographic FU was 2.9 ± 1.8 years. The clinical and functional status of patients showed a statistically significant improvement after the surgical repair in terms of New York Heart Association class (66.7 vs 7.4%; p < 0.01), clinical signs of heart failure (29.6 vs 7.4%; p < 0.01), and left ventricular function (14.8 vs 7.4%; p < 0.01). The RV and right atrium diameter were significantly reduced after surgery (5.15 ± 1.21 vs 4.32 ± 1.16; p < 0.01) and (44.7 ± 16.7 vs 26.7 ± 9.2; p < 0.01), respectively. The degree of postoperative pulmonary hypertension was also significantly reduced (40.7 vs 7.4%; p < 0.01). The survival rate was 96.3% at 1 year and 93.7% at 5 years. One patient (3.7%) had early failure of the tricuspid repair requiring a reoperation.ConclusionIsolated TV repair for adult congenital disease significantly improved patients’ clinical and functional status and allowed right ventricular remodelling and functional improvement

    Successful whole lung lavage in pulmonary alveolar proteinosis secondary to lysinuric protein intolerance: a case report

    Get PDF
    BACKGROUND: Pulmonary alveolar proteinosis (PAP) is a rare disease characterised by accumulation of lipoproteinaceous material within alveoli, occurring in three clinically distinct forms: congenital, acquired and secondary. Among the latter, lysinuric protein intolerance (LPI) is a rare genetic disorder caused by defective transport of cationic amino acids. Whole Lung Lavage (WLL) is currently the gold standard therapy for severe cases of PAP. CASE PRESENTATION: We describe the case of an Italian boy affected by LPI who, by the age of 10, developed digital clubbing and, by the age of 16, a mild restrictive functional impairment associated with a high-resolution computed tomography (HRCT) pattern consistent with pulmonary alveolar proteinosis. After careful assessment, he underwent WLL. CONCLUSION: Two years after WLL, the patient has no clinical, radiological or functional evidence of pulmonary disease recurrence, thus suggesting that WLL may be helpful in the treatment of PAP secondary to LPI

    Surfactant disaturated-phosphatidylcholine kinetics in acute respiratory distress syndrome by stable isotopes and a two compartment model

    Get PDF
    BACKGROUND: In patients with acute respiratory distress syndrome (ARDS), it is well known that only part of the lungs is aerated and surfactant function is impaired, but the extent of lung damage and changes in surfactant turnover remain unclear. The objective of the study was to evaluate surfactant disaturated-phosphatidylcholine turnover in patients with ARDS using stable isotopes. METHODS: We studied 12 patients with ARDS and 7 subjects with normal lungs. After the tracheal instillation of a trace dose of (13)C-dipalmitoyl-phosphatidylcholine, we measured the (13)C enrichment over time of palmitate residues of disaturated-phosphatidylcholine isolated from tracheal aspirates. Data were interpreted using a model with two compartments, alveoli and lung tissue, and kinetic parameters were derived assuming that, in controls, alveolar macrophages may degrade between 5 and 50% of disaturated-phosphatidylcholine, the rest being lost from tissue. In ARDS we assumed that 5–100% of disaturated-phosphatidylcholine is degraded in the alveolar space, due to release of hydrolytic enzymes. Some of the kinetic parameters were uniquely determined, while others were identified as lower and upper bounds. RESULTS: In ARDS, the alveolar pool of disaturated-phosphatidylcholine was significantly lower than in controls (0.16 ± 0.04 vs. 1.31 ± 0.40 mg/kg, p < 0.05). Fluxes between tissue and alveoli and de novo synthesis of disaturated-phosphatidylcholine were also significantly lower, while mean resident time in lung tissue was significantly higher in ARDS than in controls. Recycling was 16.2 ± 3.5 in ARDS and 31.9 ± 7.3 in controls (p = 0.08). CONCLUSION: In ARDS the alveolar pool of surfactant is reduced and disaturated-phosphatidylcholine turnover is altered

    Surfactant disaturated-phosphatidylcholine kinetics in acute respiratory distress syndrome by stable isotopes and a two compartment model

    Get PDF
    BACKGROUND: In patients with acute respiratory distress syndrome (ARDS), it is well known that only part of the lungs is aerated and surfactant function is impaired, but the extent of lung damage and changes in surfactant turnover remain unclear. The objective of the study was to evaluate surfactant disaturated-phosphatidylcholine turnover in patients with ARDS using stable isotopes. METHODS: We studied 12 patients with ARDS and 7 subjects with normal lungs. After the tracheal instillation of a trace dose of (13)C-dipalmitoyl-phosphatidylcholine, we measured the (13)C enrichment over time of palmitate residues of disaturated-phosphatidylcholine isolated from tracheal aspirates. Data were interpreted using a model with two compartments, alveoli and lung tissue, and kinetic parameters were derived assuming that, in controls, alveolar macrophages may degrade between 5 and 50% of disaturated-phosphatidylcholine, the rest being lost from tissue. In ARDS we assumed that 5–100% of disaturated-phosphatidylcholine is degraded in the alveolar space, due to release of hydrolytic enzymes. Some of the kinetic parameters were uniquely determined, while others were identified as lower and upper bounds. RESULTS: In ARDS, the alveolar pool of disaturated-phosphatidylcholine was significantly lower than in controls (0.16 ± 0.04 vs. 1.31 ± 0.40 mg/kg, p < 0.05). Fluxes between tissue and alveoli and de novo synthesis of disaturated-phosphatidylcholine were also significantly lower, while mean resident time in lung tissue was significantly higher in ARDS than in controls. Recycling was 16.2 ± 3.5 in ARDS and 31.9 ± 7.3 in controls (p = 0.08). CONCLUSION: In ARDS the alveolar pool of surfactant is reduced and disaturated-phosphatidylcholine turnover is altered

    Amiodarone and metabolite MDEA inhibit Ebola virus infection by interfering with the viral entry process

    Get PDF
    Ebola virus disease (EVD) is one of the most lethal transmissible infections characterized by a high fatality rate, and a treatment has not been developed yet. Recently, it has been shown that cationic amphiphiles, among them the antiarrhythmic drug amiodarone, inhibit filovirus infection. In the present work, we investigated how amiodarone interferes with Ebola virus infection. Wild-type Sudan ebolavirus and recombinant vesicular stomatitis virus, pseudotyped with the Zaire ebolavirus glycoprotein, were used to gain further insight into the ability of amiodarone to affect Ebola virus infection. We show that amiodarone decreases Ebola virus infection at concentrations close to those found in the sera of patients treated for arrhythmias. The drug acts by interfering with the fusion of the viral envelope with the endosomal membrane. We also show that MDEA, the main amiodarone metabolite, contributes to the antiviral activity. Finally, studies with amiodarone analogues indicate that the antiviral activity is correlated with drug ability to accumulate into and interfere with the endocytic pathway. Considering that it is well tolerated, especially in the acute setting, amiodarone appears to deserve consideration for clinical use in EV

    Extensive cardiac infiltration in acute T-cell lymphoblastic leukemia:occult extra-medullary relapse and remission after salvage chemotherapy

    Get PDF
    none5noneBaritussio, Anna; Gately, Amy; Pawade, Joya; Marks, David I.; Bucciarelli-Ducci, ChiaraBaritussio, Anna; Gately, Amy; Pawade, Joya; Marks, David I.; Bucciarelli-Ducci, Chiar
    • …
    corecore