553 research outputs found

    Carbapenem-resistant bacteria in a secondary wastewater treatment plant

    Get PDF
    Bacterial resistance to carbapenems is an emerging problem of this century. A carbapenem-resistant bacterial population (CRBP) grown at 42°C was monitored in the influent and effluent of a secondary municipal wastewater treatment plant over 10 months. The municipal wastewater consisted of domestic, industrial, hospital and storm wastewaters. Median numbers of CRBP in influent and effluent water were 3.5 and 1.3 log CFU/mL, with its prevalence among total heterotrophic bacteria at 47% and 26%, respectively. Correlation of CRBP with physico-chemical and other bacteriological parameters of wastewater was estimated. Higher numbers of CRBP in influent and effluent were found in cases of nutrient-rich wastewater with higher concentrations of total heterotrophic bacteria and intestinal enterococci. Reduction of CRBP in the wastewater treatment process of 54% was comparable to the reduction of intestinal enterococci. Despite the significant elimination of CRBP in the secondary type of wastewater treatment plant, substantial numbers of CRBP are released through the effluent into the natural receiving waters. Since the CRBP grown at 42°C was not found in natural water samples beyond the vicinity of hospitals, these bacteria may be used as an indicator of hospital wastewaters.Keywords: environmental bacteria, carbapenem-resistant bacteria, public health, wastewate

    Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors

    Full text link
    Upon introducing charge carriers into the copper-oxygen sheets of the enigmatic lamellar cuprates the ground state evolves from an insulator into a superconductor, and eventually into a seemingly conventional metal (a Fermi liquid). Much has remained elusive about the nature of this evolution and about the peculiar metallic state at intermediate hole-carrier concentrations (p). The planar resistivity of this unconventional metal exhibits a linear temperature dependence (\rho \propto T) that is disrupted upon cooling toward the superconducting state by the opening of a partial gap (the pseudogap) on the Fermi surface. Here we first demonstrate for the quintessential compound HgBa2_2CuO4+δ_{4+\delta} a dramatic switch from linear to purely quadratic (Fermi-liquid-like, \rho \propto T2^2) resistive behavior in the pseudogap regime. Despite the considerable variation in crystal structures and disorder among different compounds, our result together with prior work gives new insight into the p-T phase diagram and reveals the fundamental resistance per copper-oxygen sheet in both linear (\rho_S = A_{1S} T) and quadratic (\rho_S = A_{2S} T2^2) regimes, with A_{1S} \propto A_{2S} \propto 1/p. Theoretical models can now be benchmarked against this remarkably simple universal behavior. Deviations from this underlying behavior can be expected to lead to new insights into the non-universal features exhibited by certain compounds

    Tunable Polaronic Conduction in Anatase TiO2

    Get PDF
    Oxygen vacancies created in anatase TiO2 by UV photons (80–130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.open1192sciescopu

    Two Ising-like magnetic excitations in a single-layer cuprate superconductor

    Full text link
    There exists increasing evidence that the phase diagram of the high-transition temperature (Tc) cuprate superconductors is controlled by a quantum critical point. One distinct theoretical proposal is that, with decreasing hole-carrier concentration, a transition occurs to an ordered state with two circulating orbital currents per CuO2 square. Below the 'pseudogap' temperature T* (T* > Tc), the theory predicts a discrete order parameter and two weakly-dispersive magnetic excitations in structurally simple compounds that should be measurable by neutron scattering. Indeed, novel magnetic order and one such excitation were recently observed. Here, we demonstrate for tetragonal HgBa2CuO4+d the existence of a second excitation with local character, consistent with the theory. The excitations mix with conventional antiferromagnetic fluctuations, which points toward a unifying picture of magnetism in the cuprates that will likely require a multi-band description.Comment: Including supplementary informatio

    Doping-Dependent Raman Resonance in the Model High-Temperature Superconductor HgBa2CuO4+d

    Full text link
    We study the model high-temperature superconductor HgBa2CuO4+d with electronic Raman scattering and optical ellipsometry over a wide doping range. The resonant Raman condition which enhances the scattering cross section of "two-magnon" excitations is found to change strongly with doping, and it corresponds to a rearrangement of inter-band optical transitions in the 1-3 eV range seen by ellipsometry. This unexpected change of the resonance condition allows us to reconcile the apparent discrepancy between Raman and x-ray detection of magnetic fluctuations in superconducting cuprates. Intriguingly, the strongest variation occurs across the doping level where the antinodal superconducting gap reaches its maximum.Comment: 4 pages, 4 figures, contact authors for Supplemental Materia

    Hall, Seebeck, and Nernst Coefficients of Underdoped HgBa2CuO4+d: Fermi-Surface Reconstruction in an Archetypal Cuprate Superconductor

    Full text link
    Charge density-wave order has been observed in cuprate superconductors whose crystal structure breaks the square symmetry of the CuO2 planes, such as orthorhombic YBa2Cu3Oy (YBCO), but not so far in cuprates that preserve that symmetry, such as tetragonal HgBa2CuO4+d (Hg1201). We have measured the Hall (R_H), Seebeck (S), and Nernst coefficients of underdoped Hg1201 in magnetic fields large enough to suppress superconductivity. The high-field R_H(T) and S(T) are found to drop with decreasing temperature and become negative, as also observed in YBCO at comparable doping. In YBCO, the negative R_H and S are signatures of a small electron pocket caused by Fermi-surface reconstruction, attributed to charge density-wave modulations observed in the same range of doping and temperature. We deduce that a similar Fermi-surface reconstruction takes place in Hg1201, evidence that density-wave order exists in this material. A striking similarity is also found in the normal-state Nernst coefficient, further supporting this interpretation. Given the model nature of Hg1201, Fermi-surface reconstruction appears to be common to all hole-doped cuprates, suggesting that density-wave order is a fundamental property of these materials
    corecore