22 research outputs found
Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons
Abstract Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/ progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling
The conserved histone chaperone LIN-53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans.
Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN-53 (RBBP4/7) associates with different chromatin-regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN-53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN-53 die early because LIN-53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin-53 and sin-3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin-53 and sin-3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN-53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN-53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved
A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans
Engineering fluorescent proteins into large genomic clones, contained within BACs or fosmid vectors, is a tool to visualize and study spatiotemporal gene expression patterns in transgenic animals. Because these reporters cover large genomic regions, they most likely capture all cis-regulatory information and can therefore be expected to recapitulate all aspects of endogenous gene expression. Inserting tags at the target gene locus contained within genomic clones by homologous recombination (“recombineering”) represents the most straightforward method to generate these reporters. In this methodology paper, we describe a simple and robust pipeline for recombineering of fosmids, which we apply to generate reporter constructs in the nematode C. elegans, whose genome is almost entirely covered in an available fosmid library. We have generated a toolkit that allows for insertion of fluorescent proteins (GFP, YFP, CFP, VENUS, mCherry) and affinity tags at specific target sites within fosmid clones in a virtually seamless manner. Our new pipeline is less complex and, in our hands, works more robustly than previously described recombineering strategies to generate reporter fusions for C. elegans expression studies. Furthermore, our toolkit provides a novel recombineering cassette which inserts a SL2-spliced intercistronic region between the gene of interest and the fluorescent protein, thus creating a reporter controlled by all 5′ and 3′ cis-acting regulatory elements of the examined gene without the direct translational fusion between the two. With this configuration, the onset of expression and tissue specificity of secreted, sub-cellular compartmentalized or short-lived gene products can be easily detected. We describe other applications of fosmid recombineering as well. The simplicity, speed and robustness of the recombineering pipeline described here should prompt the routine use of this strategy for expression studies in C. elegans
Identifying Molecular Roadblocks for Transcription Factor-Induced Cellular Reprogramming In Vivo by Using <i>C. elegans</i> as a Model Organism
Generating specialized cell types via cellular transcription factor (TF)-mediated reprogramming has gained high interest in regenerative medicine due to its therapeutic potential to repair tissues and organs damaged by diseases or trauma. Organ dysfunction or improper tissue functioning might be restored by producing functional cells via direct reprogramming, also known as transdifferentiation. Regeneration by converting the identity of available cells in vivo to the desired cell fate could be a strategy for future cell replacement therapies. However, the generation of specific cell types via reprogramming is often restricted due to cell fate-safeguarding mechanisms that limit or even block the reprogramming of the starting cell type. Nevertheless, efficient reprogramming to generate homogeneous cell populations with the required cell type’s proper molecular and functional identity is critical. Incomplete reprogramming will lack therapeutic potential and can be detrimental as partially reprogrammed cells may acquire undesired properties and develop into tumors. Identifying and evaluating molecular barriers will improve reprogramming efficiency to reliably establish the target cell identity. In this review, we summarize how using the nematode C. elegans as an in vivo model organism identified molecular barriers of TF-mediated reprogramming. Notably, many identified molecular factors have a high degree of conservation and were subsequently shown to block TF-induced reprogramming of mammalian cells
The C. elegans Tailless/TLX transcription factor nhr-67 controls neuronal identity and left/right asymmetric fate diversification
An understanding of the molecular mechanisms of cell fate determination in
the nervous system requires the elucidation of transcriptional regulatory
programs that ultimately control neuron-type-specific gene expression
profiles. We show here that the C. elegans Tailless/TLX-type, orphan
nuclear receptor NHR-67 acts at several distinct steps to determine the
identity and subsequent left/right (L/R) asymmetric subtype diversification of
a class of gustatory neurons, the ASE neurons. nhr-67 controls
several broad aspects of sensory neuron development and, in addition, triggers
the expression of a sensory neuron-type-specific selector gene,
che-1, which encodes a zinc-finger transcription factor. Subsequent
to its induction of overall ASE fate, nhr-67 diversifies the fate of
the two ASE neurons ASEL and ASER across the L/R axis by promoting ASER and
inhibiting ASEL fate. This function is achieved through direct expression
activation by nhr-67 of the Nkx6-type homeobox gene cog-1,
an inducer of ASER fate, that is inhibited in ASEL through the miRNA
lsy-6. Besides controlling bilateral and asymmetric aspects of ASE
development, nhr-67 is also required for many other neurons of
diverse lineage history and function to appropriately differentiate,
illustrating the broad and diverse use of this type of transcription factor in
neuronal development
Neuron-type specific regulation of a 3′UTR through redundant and combinatorially acting cis-regulatory elements
3′ Untranslated region (UTR)-dependent post-transcriptional regulation has emerged as a critical mechanism of controlling gene expression in various physiological contexts, including cellular differentiation events. Here, we examine the regulation of the 3′UTR of the die-1 transcription factor in a single neuron of the nematode C. elegans. This 3′UTR shows the intriguing feature of being differentially regulated across the animal's left/right axis. In the left gustatory neuron, ASEL, in which DIE-1 protein is normally expressed in adult animals, the 3′UTR confers no regulatory information, while in the right gustatory neuron, ASER, where DIE-1 is normally not expressed, this 3′UTR confers negative regulatory information. Here, we systematically analyze the cis-regulatory architecture of the die-1 3′UTR using a transgenic, in vivo assay system. Through extensive mutagenesis and sequence insertions into heterologous 3′UTR contexts, we describe three 25-base-pair (bp) sequence elements that are both required and sufficient to mediate the ASER-specific down-regulation of the die-1 3′UTR. These three 25-bp sequence elements operate in both a redundant and combinatorial manner. Moreover, there are not only redundant elements within the die-1 3′UTR regulating its left/right asymmetric activity but asymmetric 3′UTR regulation is itself redundant with other regulatory mechanisms to achieve asymmetric DIE-1 protein expression and function in ASEL versus ASER. The features of 3′UTR regulation we describe here may apply to some of the vast number of genes in animal genomes whose expression is predicted to be regulated through their 3′UTR
Removal of Polycomb Repressive Complex 2 Makes C. elegans Germ Cells Susceptible to Direct Conversion into Specific Somatic Cell Types
How specific cell types can be directly converted into other distinct cell types is a matter of intense investigation with wide-ranging basic and biomedical implications. Here, we show that removal of the histone 3 lysine 27 (H3K27) methyltransferase Polycomb repressor complex 2 (PRC2) permits ectopically expressed, neuron-type-specific transcription factors (“terminal selectors”) to convert Caenorhabditis elegans germ cells directly into specific neuron types. Terminal-selector-induced germ-cell-to-neuron conversion can be observed not only upon genome-wide loss of H3K27 methylation in PRC2(−) animals but also upon genome-wide redistribution of H3K27 methylation patterns in animals that lack the H3K36 methyltransferase MES-4. Manipulation of the H3K27 methylation status not only permits conversion of germ cells into neurons but also permits hlh-1/MyoD-dependent conversion of germ cells into muscle cells, indicating that PRC2 protects the germline from the aberrant execution of multiple distinct somatic differentiation programs. Taken together, our findings demonstrate that the normally multistep process of development from a germ cell via a zygote to a terminally differentiated somatic cell type can be short-cut by providing an appropriate terminal selector transcription factor and manipulating histone methylation patterns
Dynamic expression of LIM cofactors in the developing mouse neural tube
The developmental regulation of LIM homeodomain transcription factors (LIM-HD) by the LIM domain-binding cofactors CLIM/Ldb/NLI and RLIM has been demonstrated. Whereas CLIM cofactors are thought to be required for at least some of the in vivo functions of LIM-HD proteins, the ubiquitin ligase RLIM functions as a negative regulator by its ability to target CLIM cofactors for proteasomal degradation. In this report, we have investigated and compared the protein expression of both factors in the developing mouse neural tube. We co-localize both proteins in many tissues and, although widely expressed, we detect high levels of both cofactors in specific neural tube regions, e.g., in the ventral neural tube, where motor neurons reside. The mostly ubiquitous distribution of RLIM- and CLIM-encoding mRNA differs from the more specific expression of both cofactors at the protein level, indicating post-transcriptional regulation. Furthermore, we show that both cofactors not only co-localize with each other but also with Isl and Lhx3 LIM-HD proteins in developing ventral neural tube neurons. Our results demonstrate the dynamic expression of cofactors participating in the regulation of LIM-HD proteins during the development of the neural tube in mice and suggest additional post-transcriptional regulation in the nuclear LIM-HD protein network
Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons
Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling
Determinants of promoter and enhancer transcription directionality in metazoans
Divergent transcription from promoters and enhancers occurs in many species, but it is unclear if it is a general feature of all eukaryotic cis regulatory elements. Here the authors define cis regulatory elements in worms, flies, and human; and identify several differences in regulatory architecture among metazoans