121 research outputs found

    Photon Splitting in Magnetar Models of Soft Gamma Repeaters

    Get PDF
    The recent association of soft gamma repeaters (SGRs) with counterparts in other wavebands has sparked much interest in these sources. One of the recent models for these objects is that they originate in the environs of neutron stars with fields much stronger than the quantum critical field \teq{B_{cr}=4.413\times 10^{13}} Gauss. Near such neutron stars, dubbed magnetars, the exotic quantum process of magnetic photon splitting becomes prolific. Its principal effect is to degrade photon energies and thereby soften gamma-ray spectra from neutron stars; it has recently been suggested that splitting may be responsible for limiting the hardness of emission in SGRs, if these sources originate in neutron stars with supercritical surface fields. Seed photons in supercritical fields efficiently generate soft gamma-ray spectra, typical of repeaters. In this paper, the influence of the curved dipole field geometry of a neutron star magnetosphere on the photon splitting rate is investigated. The dependence of the attenuation length on the location and angular direction of the seed photons is explored.Comment: 5 pages including 3 encapsulated figures, as a compressed, uuencoded, Postscript file. To appear in Proc. of the 1995 La Jolla workshop ``High Velocity Neutron Stars and Gamma-Ray Bursts'' eds. Rothschild, R. et al., AIP, New Yor

    Photon splitting in soft gamma repeaters

    Get PDF
    The exotic quantum process of photon splitting has great potential to explain the softness of emission in soft gamma repeaters (SGRs) if they originate in neutron stars with surface fields above the quantum critical field B_{\rm cr}=4.413\times 10^{13}Gauss. Splitting becomes prolific at such field strengths: its principal effect is to degrade photon energies, initiating a cascade that softens gamma-ray spectra. Uniform field cascade calculations have demonstrated that emission could be softened to the observed SGR energies for fields exceeding about 10^{14}Gauss. Recently, we have determined splitting attenuation lengths and maximum energies for photon escape in neutron star environments including the effects of magnetospheric dipole field geometry. Such escape energies \erg_{esc} suitably approximate the peak energy of the emergent spectrum, and in this paper we present results for \erg_{esc} as a function of photon emission angles for polar cap and equatorial emission regions. The escape energy is extremely insensitive to viewing perspective for equatorial emission, arguing in favour of such a site for the origin of SGR activity

    Hard X-ray Quiescent Emission in Magnetars via Resonant Compton Upscattering

    Full text link
    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku, NuSTAR and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, inverse Compton scattering is anticipated to be the most efficient process for generating the continuum radiation, because the scattering cross section is resonant at the cyclotron frequency. We present hard X-ray upscattering spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These model spectra are integrated over bundles of closed field lines and obtained for different observing perspectives. The spectral turnover energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the turnovers inferred in magnetar hard X-ray tails. Electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulse phases. Our spectral computations use a new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.Comment: 5 pages, 2 figures, to appear in Proc. "Physics of Neutron Stars - 2017," Journal of Physics: Conference Series, eds. G. G. Pavlov, et al., held in Saint Petersburg, Russia, 10-14 July, 201

    High Energy Neutrinos and Photons from Curvature Pions in Magnetars

    Get PDF
    We discuss the relevance of the curvature radiation of pions in strongly magnetized pulsars or magnetars, and their implications for the production of TeV energy neutrinos detectable by cubic kilometer scale detectors, as well as high energy photons.Comment: 19 pages, 4 figures, to appear in JCA

    Compton Scattering in Ultra-Strong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime

    Get PDF
    This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields (>4×1012 > 4 \times 10^{12} G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that strong magnetic fields significantly lower the Compton scattering cross section below and at the resonance, when the incident photon energy exceeds mec2m_ec^2 in the electron rest frame. The cross section is strongly dependent on the polarization of the final scattered photon. Below the cyclotron fundamental, mostly photons of perpendicular polarization are produced in scatterings, a situation that also arises above this resonance for sub-critical fields. However, an interesting discovery is that for super-critical fields, a preponderance of photons of parallel polarization results from scatterings above the cyclotron fundamental. This characteristic is both a relativistic and magnetic effect not present in the Thomson or Klein-Nishina limits.Comment: AASTeX format, 31 pages included 7 embedded figures, accepted for publication in The Astrophysical Journa

    Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation

    Get PDF
    Calculations of reaction rates for the third-order QED process of photon splitting in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant advances beyond the work of Mentzel et al. by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.

    Photon Splitting Cascades in Gamma-Ray Pulsars and the Spectrum of PSR1509-58

    Get PDF
    Magnetic photon splitting, a QED process that becomes important only in magnetic fields approaching the quantum critical value, B_cr = 4.41 X 10^13 Gauss, is investigated as a mechanism for attenuation of gamma-rays emitted near the surface of strongly-magnetized pulsars. We model photon splitting attenuation and subsequent splitting cascades in gamma-ray pulsars, including the dipole field and curved spacetime geometry of the neutron star magnetosphere. We focus specifically on PSR1509-58, which has the highest surface magnetic field of all the gamma-ray pulsars (B_0 = 3 X 10^13 Gauss). We find that splitting will not be important for most gamma-ray pulsars, i.e. those with B_0 <~ 0.2 B_cr, but will be important for gamma-ray pulsars having B_0 >~ 0.3 B_cr, where the splitting attenuation lengths and escape energies become comparable to or less than those for pair production. We compute Monte Carlo spectral models for PSR1509-58. We find that photon splitting, or combined splitting and pair production, can explain the unusually low cutoff energy (between 2 and 30 MeV) of PSR1509-58, and that the model cascade spectra, which display strong polarization, are consistent with the observed spectral points and upper limits for polar cap emission at a range of magnetic colatitudes up to ~ 25 degrees.Comment: 39 pages, 14 embedded figures, AASTEX To appear in ApJ, January 20, 199

    Full polar cap cascade scenario: γ\gamma-ray and X-ray luminosities from spin-powered pulsars

    Full text link
    We modify polar cap cascade picture to include the ICS of the higher generation pairs. In such a ``full-cascade'' scenario, not only the perpendicular portion of the energy of the pairs goes to high energy radiation via SR, but the parallel portion of the energy of the pairs can also contribute to high energy emission via ICS with the soft thermal photons from either the full neutron star surface or the hot polar cap. An important output of such a scenario is that the soft tail of the ICS spectrum can naturally result in a non-thermal X-ray component which can contribute to the luminosities observed by ROSAT and ASCA. Here we present an analytic description of such a full polar cap cascade scenario within the framework of Harding & Muslimov acceleration model. We present the theoretical predictions of the γ\gamma-ray luminosities, the thermal and non-thermal X-ray luminosities for the known spin-powered X-ray pulsars. Our results show that the observed different dependences of the high energy luminosities on the pulsar spin-down luminosities, i.e., Lγ(Lsd)1/2L_\gamma \propto (L_{\rm sd})^{1/2} and Lx103LsdL_x \sim 10^{-3} L_{\rm sd}, are well reproduced. Our model predicts that the {\em pulsed} soft X-rays in the ROSAT band from most of the millisecond pulsars might be of thermal origin if there is no strong multipole field components near the surfaces of these pulsars.Comment: 23 pages, emulateapj style, final version to appear in the Astrophysical Journa

    Photon Splitting and Pair Creation in Highly Magnetized Pulsars

    Get PDF
    The absence of radio pulsars with long periods has lead to the popular notion of a high P ``death line.'' In the standard picture, beyond this boundary, pulsars with low spin rates cannot accelerate particles above the stellar surface to high enough energies to initiate pair cascades, and the pair creation needed for radio emission is strongly suppressed. In this paper we explore the possibility of another pulsar ``death line'' in the context of polar cap models, corresponding to high magnetic fields B in the upper portion of the period-period derivative diagram, a domain where few radio pulsars are observed. The origin of this high B boundary, which may occur when B becomes comparable to or exceeds Bcr=4.4×1013B_{\rm cr} = 4.4 \times 10^{13} Gauss, is also due to the suppression of magnetic pair creation, but primarily because of ineffective competition with magnetic photon splitting. Threshold pair creation also plays a prominent role in the suppression of cascades. We present Monte Carlo calculations of the pair yields in photon splitting/pair cascades which show that, in the absence of scattering effects, pair production is effectively suppressed, but only if all three modes of photon splitting allowed by QED are operating in high fields. This paper describes the probable shape and position of the new ``death line,'' above which pulsars are expected to be radio quiet, but perhaps still X-ray and gamma-ray bright. The hypothesized existence of radio-quiet sources finds dramatic support in the recent discovery of ultra-strong fields in Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars. Guidelines for moderate to high B pulsar searches at radio wavelengths and also in the soft and hard gamma-ray bands are presented.Comment: 19 pages, including 1 table and 9 figures, AASTeX apjgalley format, To appear in The Astrophysical Journal, Vol 547, February 1, 2001 issu
    corecore