91 research outputs found

    Site-Directed Mutagenesis by Double Polymerase Chain Reaction: Megaprimer Method

    Get PDF
    The megaprimer method (1) based on polymerase chain reaction (PCR) is one of the simplest and most versatile procedures of site-specific in vitro mutagenesis available to date. The method utilizes three oligonucleotide primers and two rounds of PCR performed on a DNA template containing the cloned gene that is to be mutated. The rationale of the method is shown schematically in Fig. 1 where A and B represent the flanking primers that can map either within the cloned gene or outside the gene (i.e., within the vector sequence) and M represents the internal mutant primer containing the desired base change. The first round of PCR is performed using the mutant primer (e.g., M1 in Fig. 1) and one of the flanking primers (e.g., A). The double-stranded product (A-M1) is purified and used as one of the primers (hence the name megaprimer ) in the second round of PCR along with the other flanking primer (B). The wild type cloned gene is used as template in both PCR reactions. The final PCR product (A-M1-B) containing the mutation can be used in a variety of standard applications, such as cloning in expression vectors and sequencing, or in more specialized applications, such as production of the gene message in vitro if primer A (or the template sequence downstream of primer A) also contains a transcriptional promoter (e.g., that of SP6 or T7 phage)

    Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses

    Get PDF
    BACKGROUND: Post-transcriptional gene silencing (PTGS) by short interfering RNA has opened up new directions in the phenotypic mutation of cellular genes. However, its efficacy on non-nuclear genes and its effect on the interferon pathway remain unexplored. Since directed mutation of RNA genomes is not possible through conventional mutagenesis, we have tested sequence-specific 21-nucleotide long double-stranded RNAs (dsRNAs) for their ability to silence cytoplasmic RNA genomes. RESULTS: Short dsRNAs were generated against specific mRNAs of respiratory syncytial virus, a nonsegmented negative-stranded RNA virus with a cytoplasmic life cycle. At nanomolar concentrations, the dsRNAs specifically abrogated expression of the corresponding viral proteins, and produced the expected mutant phenotype ex vivo. The dsRNAs did not induce an interferon response, and did not inhibit cellular gene expression. The ablation of the viral proteins correlated with the loss of the specific mRNAs. In contrast, viral genomic and antigenomic RNA, which are encapsidated, were not directly affected. CONCLUSIONS: Synthetic inhibitory dsRNAs are effective in specific silencing of RNA genomes that are exclusively cytoplasmic and transcribed by RNA-dependent RNA polymerases. RNA-directed RNA gene silencing does not require cloning, expression, and mutagenesis of viral cDNA, and thus, will allow the generation of phenotypic null mutants of specific RNA viral genes under normal infection conditions and at any point in the infection cycle. This will, for the first time, permit functional genomic studies, attenuated infections, reverse genetic analysis, and studies of host-virus signaling pathways using a wild type RNA virus, unencumbered by any superinfecting virus

    The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin

    Get PDF
    BACKGROUND: The naturally occurring benzoquinone ansamycin compound, geldanamycin (GA), is a specific inhibitor of heat shock protein 90 (Hsp90) and is a potential anticancer agent. Since Plasmodium falciparum has been reported to have an Hsp90 ortholog, we tested the possibility that GA might inhibit it and thereby display antiparasitic activity. RESULTS: We provide direct recombinant DNA evidence for the Hsp90 protein of Plasmodium falciparum, the causative agent of fatal malaria. While the mRNA of Hsp90 was mainly expressed in ring and trophozoite stages, the protein was found in all stages, although schizonts contained relatively lower amounts. In vitro the parasitic Hsp90 exhibited an ATP-binding activity that could be specifically inhibited by GA. Plasmodium growth in human erythrocyte culture was strongly inhibited by GA with an IC(50 )of 20 nM, compared to the IC(50 )of 15 nM for chloroquine (CQ) under identical conditions. When used in combination, the two drugs acted synergistically. GA was equally effective against CQ-sensitive and CQ-resistant strains (3D7 and W2, respectively) and on all erythrocytic stages of the parasite. CONCLUSIONS: Together, these results suggest that an active and essential Hsp90 chaperone cycle exists in Plasmodium and that the ansamycin antibiotics will be an important tool to dissect its role in the parasite. Additionally, the favorable pharmacology of GA, reported in human trials, makes it a promising antimalarial drug

    Identification, cloning, and mutational analysis of the casein kinase 1 cDNA of the malaria parasite, Plasmodium falciparum - Stage-specific expression of the gene

    Get PDF
    The cDNA for casein kinase 1 (CK1) of Plasmodium falciparum was cloned, sequenced, and expressed in bacteria, The single major open reading frame of the 1,2-kilobase pair cDNA coded for a 324-amino acid polypeptide of similar to 37 kDa, the predicted sequence of which showed strong identity with known CK1 isoforms, The purified recombinant enzyme exhibited properties characteristic of CK1, such as inhibition by CK1-7, the ability to phosphorylate a highly specific peptide substrate, and a strong preference for ATP over GTP, A casein kinase activity, partially purified from soluble extracts of P. falciparum by affinity chromatography through CK1-7 columns displayed identical properties, The activity showed a stage-specific expression in the parasite, in the order trophozoite \u3e ring much greater than schizont. Northern analysis indicated the existence of two major CK1 mRNAs, 2.4 and 3.2 kilobase pairs long, the levels of which mere in the order ring \u3e schizont \u3e trophozoite. Mutagenesis of recombinant CK1 defined important amino acid residues and their potential role in the conformation of the enzyme, The malarial CK1 appeared to be the one of the smallest and perhaps the most primitive CK1 enzymes known, containing little sequence information beyond the minimal catalytic domain

    siRNA for Influenza Therapy

    Get PDF
    Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world’s population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here

    Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1) from the malaria parasite, Plasmodium falciparum: demonstration of its essential role using RNA interference

    Get PDF
    BACKGROUND: Reversible protein phosphorylation is relatively unexplored in the intracellular protozoa of the Apicomplexa family that includes the genus Plasmodium, to which belong the causative agents of malaria. Members of the PP1 family represent the most highly conserved protein phosphatase sequences in phylogeny and play essential regulatory roles in various cellular pathways. Previous evidence suggested a PP1-like activity in Plasmodium falciparum, not yet identified at the molecular level. RESULTS: We have identified a PP1 catalytic subunit from P. falciparum and named it PfPP1. The predicted primary structure of the 304-amino acid long protein was highly similar to PP1 sequences of other species, and showed conservation of all the signature motifs. The purified recombinant protein exhibited potent phosphatase activity in vitro. Its sensitivity to specific phosphatase inhibitors was characteristic of the PP1 class. The authenticity of the PfPP1 cDNA was further confirmed by mutational analysis of strategic amino acid residues important in catalysis. The protein was expressed in all erythrocytic stages of the parasite. Abrogation of PP1 expression by synthetic short interfering RNA (siRNA) led to inhibition of parasite DNA synthesis. CONCLUSIONS: The high sequence similarity of PfPP1 with other PP1 members suggests conservation of function. Phenotypic gene knockdown studies using siRNA confirmed its essential role in the parasite. Detailed studies of PfPP1 and its regulation may unravel the role of reversible protein phosphorylation in the signalling pathways of the parasite, including glucose metabolism and parasitic cell division. The use of siRNA could be an important tool in the functional analysis of Apicomplexan genes

    Profilin is required for viral morphogenesis, syncytium formation, and cell-specific stress fiber induction by respiratory syncytial virus

    Get PDF
    BACKGROUND: Actin is required for the gene expression and morphogenesis of respiratory syncytial virus (RSV), a clinically important Pneumovirus of the Paramyxoviridae family. In HEp-2 cells, RSV infection also induces actin stress fibers, which may be important in the immunopathology of the RSV disease. Profilin, a major regulator of actin polymerization, stimulates viral transcription in vitro. Thus, we tested the role of profilin in RSV growth and RSV-actin interactions in cultured cells (ex vivo). RESULTS: We tested three cell lines: HEp-2 (human), A549 (human), and L2 (rat). In all three, RSV grew well and produced fused cells (syncytium), and two RSV proteins, namely, the phosphoprotein P and the nucleocapsid protein N, associated with profilin. In contrast, induction of actin stress fibers by RSV occurred in HEp-2 and L2 cells, but not in A549. Knockdown of profilin by RNA interference had a small effect on viral macromolecule synthesis but strongly inhibited maturation of progeny virions, cell fusion, and induction of stress fibers. CONCLUSIONS: Profilin plays a cardinal role in RSV-mediated cell fusion and viral maturation. In contrast, interaction of profilin with the viral transcriptional proteins P and N may only nominally activate viral RNA-dependent RNA polymerase. Stress fiber formation is a cell-specific response to infection, requiring profilin and perhaps other signaling molecules that are absent in certain cell lines. Stress fibers per se play no role in RSV replication in cell culture. Clearly, the cellular architecture controls multiple steps of host-RSV interaction, some of which are regulated by profilin

    Post-translational generation of constitutively active cores from larger phosphatases in the malaria parasite, Plasmodium falciparum: implications for proteomics

    Get PDF
    BACKGROUND: Although the complete genome sequences of a large number of organisms have been determined, the exact proteomes need to be characterized. More specifically, the extent to which post-translational processes such as proteolysis affect the synthesized proteins has remained unappreciated. We examined this issue in selected protein phosphatases of the protease-rich malaria parasite, Plasmodium falciparum. RESULTS: P. falciparum encodes a number of Ser/Thr protein phosphatases (PP) whose catalytic subunits are composed of a catalytic core and accessory domains essential for regulation of the catalytic activity. Two examples of such regulatory domains are found in the Ca(+2)-regulated phosphatases, PP7 and PP2B (calcineurin). The EF-hand domains of PP7 and the calmodulin-binding domain of PP2B are essential for stimulation of the phosphatase activity by Ca(+2). We present biochemical evidence that P. falciparum generates these full-length phosphatases as well as their catalytic cores, most likely as intermediates of a proteolytic degradation pathway. While the full-length phosphatases are activated by Ca(+2), the processed cores are constitutively active and either less responsive or unresponsive to Ca(+2). The processing is extremely rapid, specific, and occurs in vivo. CONCLUSIONS: Post-translational cleavage efficiently degrades complex full-length phosphatases in P. falciparum. In the course of such degradation, enzymatically active catalytic cores are produced as relatively stable intermediates. The universality of such proteolysis in other phosphatases or other multi-domain proteins and its potential impact on the overall proteome of a cell merits further investigation

    Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Get PDF
    BACKGROUND: Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. RESULTS: We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF) cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h), P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h) the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp) suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. CONCLUSION: The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3
    • …
    corecore