5,384 research outputs found

    Leptogenesis beyond the limit of hierarchical heavy neutrino masses

    Full text link
    We calculate the baryon asymmetry of the Universe in thermal leptogenesis beyond the usual lightest right-handed (RH) neutrino dominated scenario (N_1DS) and in particular beyond the hierarchical limit (HL), M_1 << M_2 << M_3, for the RH neutrino mass spectrum. After providing some orientation among the large variety of models, we first revisit the central role of the N_1DS, with new insights on the dynamics of the asymmetry generation and then discuss the main routes departing from it, focusing on models beyond the HL. We study in detail two examples of `strong-strong' wash-out scenarios: one with `maximal phase' and the limit of very large M_3, studying the effects arising when delta_2=(M_2-M_1)/M_1 is small. We extend analytical methods already applied to the N_1DS showing, for example, that, in the degenerate limit (DL), the efficiency factors of the RH neutrinos become equal with the single decay parameter replaced by the sum. Both cases disprove the misconception that close RH neutrino masses necessarily lead to a final asymmetry enhancement and to a relaxation of the lower bounds on M_1 and on the initial temperature of the radiation-dominated expansion. We also explain why leptogenesis tends to favor normal hierarchy compared to inverted hierarchy for the left-handed neutrino masses.Comment: 30 pages, 8 figures; corrected typo in Eq. (67); shortened Introduction, Section 3 and Conclusions; one figure removed; added 2 references; to appear in JCA

    Leptogenesis implications in models with Abelian family symmetry and one extra real Higgs singlet

    Get PDF
    We show that the neutrino models, as suggested by Low, which have an additional Abelian family symmetry and a real Higgs singlet to the default see-saw do not hinder the possibility of successful thermal leptogenesis. For these models (neglecting radiative effects), we have investigated the situation of strong washout in both the one-flavor approximation and when flavor effects are included. The result is that while such models predict that theta_{13}=0 and that one light neutrino to be massless, they do not modify or provide significant constraints on the typical leptogenesis scenario where the final asymmetry is dominated by the decays of the lightest right-handed neutrinos.Comment: 18 pages, RevTeX4, accepted by Phys. Rev. D. v2: minor corrections, note and 1 ref. added, same content as published versio

    Supersymmetric Biorthogonal Quantum Systems

    Full text link
    We discuss supersymmetric biorthogonal systems, with emphasis given to the periodic solutions that occur at spectral singularities of PT symmetric models. For these periodic solutions, the dual functions are associated polynomials that obey inhomogeneous equations. We construct in detail some explicit examples for the supersymmetric pairs of potentials V_{+/-}(z) = -U(z)^2 +/- z(d/(dz))U(z) where U(z) = \sum_{k>0}u_{k}z^{k}. In particular, we consider the cases generated by U(z) = z and z/(1-z). We also briefly consider the effects of magnetic vector potentials on the partition functions of these systems.Comment: Changes are made to conform to the published version. In particular, some errors are corrected on pp 12-1

    Veterinary Regenerative Medicine for Musculoskeletal Disorders: Can Mesenchymal Stem/Stromal Cells and Their Secretome Be the New Frontier?

    Get PDF
    Regenerative medicine aims to restore the normal function of diseased or damaged cells, tissues, and organs using a set of different approaches, including cell-based therapies. In the veterinary field, regenerative medicine is strongly related to the use of mesenchymal stromal cells (MSCs), which belong to the body repair system and are defined as multipotent progenitor cells, able to self-replicate and to differentiate into different cell types. This review aims to take stock of what is known about the MSCs and their use in the veterinary medicine focusing on clinical reports on dogs and horses in musculoskeletal diseases, a research field extensively reported in the literature data. Finally, a perspective regarding the use of the secretome and/or extracellular vesicles (EVs) in the veterinary field to replace parental MSCs is provided. The pharmaceuticalization of EVs is wished due to the realization of a Good Manufacturing Practice (GMP product suitable for clinical trials

    On Quantum Effects in Soft Leptogenesis

    Full text link
    It has been recently shown that quantum Boltzman equations may be relevant for leptogenesis. Quantum effects, which lead to a time-dependent CP asymmetry, have been shown to be particularly important for resonant leptogenesis when the asymmetry is generated by the decay of two nearly degenerate states. In this work we investigate the impact of the use of quantum Boltzman equations in the framework ``soft leptogenesis'' in which supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide the CP-violating phase to generate the lepton asymmetry.Comment: 15 pages, 4 figures. Replacement to match published versio

    Supersymmetric Leptogenesis

    Full text link
    We study leptogenesis in the supersymmetric standard model plus the seesaw. We identify important qualitative differences that characterize supersymmetric leptogenesis with respect to the non-supersymmetric case. The lepton number asymmetries in fermions and scalars do not equilibrate, and are related via a non-vanishing gaugino chemical potential. Due to the presence of new anomalous symmetries, electroweak sphalerons couple to winos and higgsinos, and QCD sphalerons couple to gluinos, thus modifying the corresponding chemical equilibrium conditions. A new constraint on particles chemical potentials corresponding to an exactly conserved RR-charge, that also involves the number density asymmetry of the heavy sneutrinos, appears. These new ingredients determine the 3×43\times 4 matrices that mix up the density asymmetries of the lepton flavours and of the heavy sneutrinos. We explain why in all temperature ranges the particle thermodynamic system is characterized by the same number of independent quantities. Numerical differences with respect to usual treatment remain at the O(1){\cal O}(1) level.Comment: 30 pages, 2 figures. Typos corrected, one reference added. Version published in JCA

    Physical layer secrecy by power splitting and jamming in cooperative multiple relay based on energy harvesting in full-duplex network

    Get PDF
    In this article, we investigated the secrecy performance of a three-hop relay network system with Power Splitting (PS) and Energy Harvesting (EH). In the presence of one eavesdropper, a signal is transferred from source to destination with the help of a relay. The source signal transmits in full-duplex (FD) mood, jamming the relay transfer signals to the destination. The relay and source employ Time Switching (TS) and Energy Harvesting (EH) techniques to obtain the power from the power beacon. In this study, we compared the Secrecy Rate of two Cooperative Schemes, Amplify and Forward (AF) and Decode and Forward (DF), for both designed systems with the established EH and PS system. The Secrecy Rate was improved by 50.5% in the AF scheme and by 44.2% in the DF scheme between the relay and eavesdropper at 40 m apart for the proposed system in EH and PS. This simulation was performed using the Monto Carlo method in MATLAB

    Update on neutrino mixing in the early Universe

    Get PDF
    From the current cosmological observations of CMB and nuclear abundances we show, with an analytic procedure, that the total effective number of extra neutrino species ΔNνtot<0.3\Delta N_{\nu}^{\rm tot}< 0.3. We also describe the possible signatures of non standard effects that could be revealed in future CMB observations. This cosmological information is then applied to neutrino mixing models. Taking into account the recent results from the SNO and SuperKamiokande experiments, disfavouring pure active to sterile neutrino oscillations, we show that all 4 neutrino mixing models, both of 2+2 and 3+1 type, lead to a full thermalization of the sterile neutrino flavor. Moreover such a sterile neutrino production excludes the possibility of an electron neutrino asymmetry generation and we conclude that ΔNνtot≃1\Delta N_{\nu}^{\rm tot}\simeq 1, in disagreement with the cosmological bound. This result is valid under the assumption that the initial neutrino asymmetries are small. We suggest the existence of a second sterile neutrino flavor, with mixing properties such to generate a large electron neutrino asymmetry, as a possible way out.Comment: 29 pages, 3 figures; to appear on Phys.Rev.D; added discussion (at page 19) and references; typos correcte
    • …
    corecore