6,817 research outputs found
Recognition of Cherenkov Ring Patterns with the HMPID-RICH Detector in ALICE at LHC
A high momentum particle identification detector (HMPID) covering about 50f the ALICE central barrel region has been designed and prototyped.The detector consists of seven RICH modules with a proximity focusing geometry, covering 12m2. The very large density of hits on the detector (80÷90 part/m2 in the extreme cases) makes the recognition of the Cherenkov photon patterns a complex and crucial task. A study of the pattern recognition based on the Hough transformation in terms of particle identification efficiency and particle contamination will be presented
Leptogenesis within a generalized quark-lepton symmetry
Quark-lepton symmetry has been shown to be inconsistent with baryogenesis via
leptogenesis in natural schemes of the see-saw mechanism. Within the
phenomenological approach of textures, we relax this strict symmetry and
propose weaker conditions, namely models of the neutrino Dirac mass matrix
which have the same hierarchy as the matrix elements of . We call
this guide-line generalized quark-lepton symmetry. We consider
in detail particular cases in which the moduli of the matrix elements of
are equal to those of . Within the phenomenological approach of textures,
we try for the heavy Majorana mass matrix diagonal and off-diagonal forms. We
find that an ansatz for preserving the hierarchy, together with an
off-diagonal model for the heavy Majorana neutrino mass, is consistent with
neutrino masses, neutrino mixing and baryogenesis via leptogenesis for an
intermediate mass scale GeV. The preservation of the
hierarchical structure could come from a possible symmetry scheme.Comment: 12 pages, RevTex4. Title and abstract changed. Revised and enlarged
versio
NA57 main results
The CERN NA57 experiment was designed to study the production of strange and
multi-strange particles in heavy ion collisions at SPS energies; its physics
programme is essentially completed. A review of the main results is presented.Comment: SQM 2007 Conference Proceeding
Leptogenesis in the two right-handed neutrino model revisited
We revisit leptogenesis in the minimal non-supersymmetric type I see-saw
mechanism with two right-handed (RH) neutrinos, including flavour effects and
allowing both RH neutrinos N_1 and N_2 to contribute, rather than just the
lightest RH neutrino N_1 that has hitherto been considered. By performing scans
over parameter space in terms of the single complex angle z of the orthogonal
matrix R, for a range of PMNS parameters, we find that in regions around z \sim
\pm \pi/2, for the case of a normal mass hierarchy, the N_2 contribution can
dominate the contribution to leptogenesis, allowing the lightest RH neutrino
mass to be decreased by about an order of magnitude in these regions, down to
M_1 \sim 1.3*10^11 GeV for vanishing initial N_2-abundance, with the numerical
results supported by analytic estimates. We show that the regions around z \sim
\pm \pi /2 correspond to light sequential dominance, so the new results in this
paper may be relevant to unified model building.Comment: 41 pages, 10 figures; v2 matches published version in PR
Active-sterile neutrino oscillations in the early Universe: asymmetry generation at low |delta m^2| and the Landau-Zener approximation
It is well established that active-sterile neutrino oscillations generate
large neutrino asymmetries for very small mixing angles (), negative values of and provided that
. By numerically solving the quantum
kinetic equations, we show that the generation still occurs at much lower
values of . We also describe the borders of the generation at
small mixing angles and show how our numerical results can be analytically
understood within the framework of the Landau-Zener approximation thereby
extending previous work based on the adiabatic limit. This approximate approach
leads to a fair description of the MSW dominated regime of the neutrino
asymmetry evolution and is also able to correctly reproduce its final value. We
also briefly discuss the impact that neutrino asymmetry generation could have
on big bang nucleosynthesis, CMBR and relic neutrinos.Comment: 29 pages, 8 figures; to appear on Phys. ReV. D; figure 7 added, new
curves in figure 5a, new figure
Transtibial amputee gait efficiency : energy storage and return versus solid ankle cushioned heel prosthetic feet
Energy storage and return (ESR) feet have long been assumed to promote metabolically efficient amputee gait. However, despite being prescribed for approximately thirty years, there is limited evidence that they achieve this desired function. Here, we report a meta-analysis of data from ten studies which met our selection criteria to determine whether amputee walking with ESR feet is more efficient than with conventional solid ankle cushioned heel (SACH) feet. Additionally, the data were tested for a relationship with walking speed; since it has been suggested ESR feet might perform better at higher speeds. The raw data are highly variable due to differences in study protocols; therefore we normalised the data and found a statistically significant difference (p < 0.001) between ESR and SACH feet. However, the magnitude of this difference is small, with the cost of transport (COT) with ESR feet being 97.3% of the cost with SACH feet. No relationship between ESR COT and speed was found (p = 0.191). In the authors’ opinion, these results suggest that ESR feet are not effective at improving amputee COT to a clinically relevant degree. We hypothesise this is due to limited push-off at the end of stance compared with able-bodied ankles
- …