6,498 research outputs found

    Leptogenesis within a generalized quark-lepton symmetry

    Full text link
    Quark-lepton symmetry has been shown to be inconsistent with baryogenesis via leptogenesis in natural schemes of the see-saw mechanism. Within the phenomenological approach of textures, we relax this strict symmetry and propose weaker conditions, namely models of the neutrino Dirac mass matrix MDM_D which have the same hierarchy as the matrix elements of MuM_u. We call this guide-line generalized hierarchicalhierarchical quark-lepton symmetry. We consider in detail particular cases in which the moduli of the matrix elements of MDM_D are equal to those of MuM_u. Within the phenomenological approach of textures, we try for the heavy Majorana mass matrix diagonal and off-diagonal forms. We find that an ansatz for MDM_D preserving the hierarchy, together with an off-diagonal model for the heavy Majorana neutrino mass, is consistent with neutrino masses, neutrino mixing and baryogenesis via leptogenesis for an intermediate mass scale mR1012m_R \sim 10^{12} GeV. The preservation of the hierarchical structure could come from a possible symmetry scheme.Comment: 12 pages, RevTex4. Title and abstract changed. Revised and enlarged versio

    NA57 main results

    Get PDF
    The CERN NA57 experiment was designed to study the production of strange and multi-strange particles in heavy ion collisions at SPS energies; its physics programme is essentially completed. A review of the main results is presented.Comment: SQM 2007 Conference Proceeding

    Recognition of Cherenkov Ring Patterns with the HMPID-RICH Detector in ALICE at LHC

    Get PDF
    A high momentum particle identification detector (HMPID) covering about 50f the ALICE central barrel region has been designed and prototyped.The detector consists of seven RICH modules with a proximity focusing geometry, covering 12m2. The very large density of hits on the detector (80÷90 part/m2 in the extreme cases) makes the recognition of the Cherenkov photon patterns a complex and crucial task. A study of the pattern recognition based on the Hough transformation in terms of particle identification efficiency and particle contamination will be presented

    Leptogenesis in the two right-handed neutrino model revisited

    Full text link
    We revisit leptogenesis in the minimal non-supersymmetric type I see-saw mechanism with two right-handed (RH) neutrinos, including flavour effects and allowing both RH neutrinos N_1 and N_2 to contribute, rather than just the lightest RH neutrino N_1 that has hitherto been considered. By performing scans over parameter space in terms of the single complex angle z of the orthogonal matrix R, for a range of PMNS parameters, we find that in regions around z \sim \pm \pi/2, for the case of a normal mass hierarchy, the N_2 contribution can dominate the contribution to leptogenesis, allowing the lightest RH neutrino mass to be decreased by about an order of magnitude in these regions, down to M_1 \sim 1.3*10^11 GeV for vanishing initial N_2-abundance, with the numerical results supported by analytic estimates. We show that the regions around z \sim \pm \pi /2 correspond to light sequential dominance, so the new results in this paper may be relevant to unified model building.Comment: 41 pages, 10 figures; v2 matches published version in PR

    Active-sterile neutrino oscillations in the early Universe: asymmetry generation at low |delta m^2| and the Landau-Zener approximation

    Get PDF
    It is well established that active-sterile neutrino oscillations generate large neutrino asymmetries for very small mixing angles (sin22θ0104\sin^2 2\theta_0\lesssim 10^{-4}), negative values of δm2\delta m^2 and provided that δm2104eV2|\delta m^2|\gtrsim 10^{-4} {\rm eV^2}. By numerically solving the quantum kinetic equations, we show that the generation still occurs at much lower values of δm2|\delta m^2|. We also describe the borders of the generation at small mixing angles and show how our numerical results can be analytically understood within the framework of the Landau-Zener approximation thereby extending previous work based on the adiabatic limit. This approximate approach leads to a fair description of the MSW dominated regime of the neutrino asymmetry evolution and is also able to correctly reproduce its final value. We also briefly discuss the impact that neutrino asymmetry generation could have on big bang nucleosynthesis, CMBR and relic neutrinos.Comment: 29 pages, 8 figures; to appear on Phys. ReV. D; figure 7 added, new curves in figure 5a, new figure
    corecore