20 research outputs found

    White matter tracts characteristics in habitual decision-making circuit underlie ritual behaviors in anorexia nervosa

    Get PDF
    Anorexia nervosa (AN) is a difficult to treat, pernicious psychiatric disorder that has been linked to decision-making abnormalities. We examined the structural characteristics of habitual and goal-directed decision-making circuits and their connecting white matter tracts in 32 AN and 43 healthy controls across two independent data sets of adults and adolescents as an explanatory sub-study. Total bilateral premotor/supplementary motor area-putamen tracts in the habit circuit had a significantly higher volume in adults with AN, relative to controls. Positive correlations were found between both the number of tracts and white matter volume (WMV) in the habit circuit, and the severity of ritualistic/compulsive behaviors in adults and adolescents with AN. Moreover, we found a significant influence of the habit circuit WMV on AN ritualistic/compulsive symptom severity, depending on the preoccupations symptom severity levels. These findings suggest that AN is associated with white matter plasticity alterations in the habit circuit. The association between characteristics of habit circuit white matter tracts and AN behavioral symptoms provides support for a circuit based neurobiological model of AN, and identifies the habit circuit as a focus for further investigation to aid in development of novel and more effective treatments based on brain-behavior relationships

    Sequential multi-locus transcranial magnetic stimulation for treatment of obsessive-compulsive disorder with comorbid major depression: A case series

    Get PDF
    Obsessive-compulsive disorder (OCD) and major depressive disorder (MDD) are highly comorbid [1], with depressive symptoms amplifying the chronicity and severity of OCD symptoms. Comorbid illness decreases quality of life and daily functioning [2] and is associated with greater suicidality and more frequent inpatient hospitalizations [3]. Furthermore, comorbid OCD/depression is associated with poorer response to OCD-focused psychological and pharmacological treatments [4]. Epidemiologic studies have shown that OCD symptoms generally precedes the occurrence of depression, suggesting a causal interacting model in which OCD predisposes to development of depressive symptoms [5]. In line with that causal model, Tadayonnejad et al. showed aberrant effective (directional) connectivity between OCD and MDD circuits may be a potential network mechanism of depressive symptom genesis or worsening in OCD-MDD [6]. The challenging nature of this comorbidity necessitates the development of novel, more effective treatments

    Sequential multi-locus transcranial magnetic stimulation for treatment of obsessive-compulsive disorder with comorbid major depression: A case series

    Get PDF
    Obsessive-compulsive disorder (OCD) and major depressive disorder (MDD) are highly comorbid [1], with depressive symptoms amplifying the chronicity and severity of OCD symptoms. Comorbid illness decreases quality of life and daily functioning [2] and is associated with greater suicidality and more frequent inpatient hospitalizations [3]. Furthermore, comorbid OCD/depression is associated with poorer response to OCD-focused psychological and pharmacological treatments [4]. Epidemiologic studies have shown that OCD symptoms generally precedes the occurrence of depression, suggesting a causal interacting model in which OCD predisposes to development of depressive symptoms [5]. In line with that causal model, Tadayonnejad et al. showed aberrant effective (directional) connectivity between OCD and MDD circuits may be a potential network mechanism of depressive symptom genesis or worsening in OCD-MDD [6]. The challenging nature of this comorbidity necessitates the development of novel, more effective treatments

    Vagus nerve stimulation using a miniaturized wirelessly powered stimulator in pigs.

    No full text
    Neuromodulation of peripheral nerves has been clinically used for a wide range of indications. Wireless and batteryless stimulators offer important capabilities such as no need for reoperation, and extended life compared to their wired counterparts. However, there are challenging trade-offs between the device size and its operating range, which can limit their use. This study aimed to examine the functionality of newly designed wirelessly powered and controlled implants in vagus nerve stimulation for pigs. The implant used near field inductive coupling at 13.56 MHz industrial, scientific, and medical band to harvest power from an external coil. The circular implant had a diameter of 13 mm and weighed 483 mg with cuff electrodes. The efficiency of the inductive link and robustness to distance and misalignment were optimized. As a result, the specific absorption rate was orders of magnitude lower than the safety limit, and the stimulation can be performed using only 0.1 W of external power. For the first time, wireless and batteryless VNS with more than 5 cm operation range was demonstrated in pigs. A total of 84 vagus nerve stimulations (10 s each) have been performed in three adult pigs. In a quantitative comparison of the effectiveness of VNS devices, the efficiency of systems on reducing heart rate was similar in both conventional (75%) and wireless (78.5%) systems. The pulse width and frequency of the stimulation were swept on both systems, and the response for physiological markers was drawn. The results were easily reproducible, and methods used in this study can serve as a basis for future wirelessly powered implants
    corecore