39 research outputs found

    White matter tracts characteristics in habitual decision-making circuit underlie ritual behaviors in anorexia nervosa

    Get PDF
    Anorexia nervosa (AN) is a difficult to treat, pernicious psychiatric disorder that has been linked to decision-making abnormalities. We examined the structural characteristics of habitual and goal-directed decision-making circuits and their connecting white matter tracts in 32 AN and 43 healthy controls across two independent data sets of adults and adolescents as an explanatory sub-study. Total bilateral premotor/supplementary motor area-putamen tracts in the habit circuit had a significantly higher volume in adults with AN, relative to controls. Positive correlations were found between both the number of tracts and white matter volume (WMV) in the habit circuit, and the severity of ritualistic/compulsive behaviors in adults and adolescents with AN. Moreover, we found a significant influence of the habit circuit WMV on AN ritualistic/compulsive symptom severity, depending on the preoccupations symptom severity levels. These findings suggest that AN is associated with white matter plasticity alterations in the habit circuit. The association between characteristics of habit circuit white matter tracts and AN behavioral symptoms provides support for a circuit based neurobiological model of AN, and identifies the habit circuit as a focus for further investigation to aid in development of novel and more effective treatments based on brain-behavior relationships

    Sequential multi-locus transcranial magnetic stimulation for treatment of obsessive-compulsive disorder with comorbid major depression: A case series

    Get PDF
    Obsessive-compulsive disorder (OCD) and major depressive disorder (MDD) are highly comorbid [1], with depressive symptoms amplifying the chronicity and severity of OCD symptoms. Comorbid illness decreases quality of life and daily functioning [2] and is associated with greater suicidality and more frequent inpatient hospitalizations [3]. Furthermore, comorbid OCD/depression is associated with poorer response to OCD-focused psychological and pharmacological treatments [4]. Epidemiologic studies have shown that OCD symptoms generally precedes the occurrence of depression, suggesting a causal interacting model in which OCD predisposes to development of depressive symptoms [5]. In line with that causal model, Tadayonnejad et al. showed aberrant effective (directional) connectivity between OCD and MDD circuits may be a potential network mechanism of depressive symptom genesis or worsening in OCD-MDD [6]. The challenging nature of this comorbidity necessitates the development of novel, more effective treatments

    Sequential multi-locus transcranial magnetic stimulation for treatment of obsessive-compulsive disorder with comorbid major depression: A case series

    Get PDF
    Obsessive-compulsive disorder (OCD) and major depressive disorder (MDD) are highly comorbid [1], with depressive symptoms amplifying the chronicity and severity of OCD symptoms. Comorbid illness decreases quality of life and daily functioning [2] and is associated with greater suicidality and more frequent inpatient hospitalizations [3]. Furthermore, comorbid OCD/depression is associated with poorer response to OCD-focused psychological and pharmacological treatments [4]. Epidemiologic studies have shown that OCD symptoms generally precedes the occurrence of depression, suggesting a causal interacting model in which OCD predisposes to development of depressive symptoms [5]. In line with that causal model, Tadayonnejad et al. showed aberrant effective (directional) connectivity between OCD and MDD circuits may be a potential network mechanism of depressive symptom genesis or worsening in OCD-MDD [6]. The challenging nature of this comorbidity necessitates the development of novel, more effective treatments

    The rationale for deep brain stimulation in Alzheimer\u27s disease

    No full text
    Alzheimer\u27s disease is a major worldwide health problem with no effective therapy. Deep brain stimulation (DBS) has emerged as a useful therapy for certain movement disorders and is increasingly being investigated for treatment of other neural circuit disorders. Here we review the rationale for investigating DBS as a therapy for Alzheimer\u27s disease. Phase I clinical trials of DBS targeting memory circuits in Alzheimer\u27s disease patients have shown promising results in clinical assessments of cognitive function, neurophysiological tests of cortical glucose metabolism, and neuroanatomical volumetric measurements showing reduced rates of atrophy. These findings have been supported by animal studies, where electrical stimulation of multiple nodes within the memory circuit have shown neuroplasticity through stimulation-enhanced hippocampal neurogenesis and improved performance in memory tasks. The precise mechanisms by which DBS may enhance memory and cognitive functions in Alzheimer\u27s disease patients and the degree of its clinical efficacy continue to be examined in ongoing clinical trials
    corecore