2,335 research outputs found

    Inverting a Supernova: Neutrino Mixing, Temperatures and Binding Energy

    Get PDF
    We show that the temperatures of the emergent non-electron neutrinos and the binding energy released by a galactic Type II supernova are determinable, assuming the Large Mixing Angle (LMA) solution is correct, from observations at the Sudbury Neutrino Observatory (SNO) and at Super-Kamiokande (SK). If the neutrino mass hierarchy is inverted, either a lower or upper bound can be placed on the neutrino mixing angle θ13\theta_{13}, and the hierarchy can be deduced for adiabatic transitions. For the normal hierarchy, neither can θ13\theta_{13} be constrained nor can the hierarchy be determined. Our conclusions are qualitatively unchanged for the proposed Hyper-Kamiokande detector.Comment: Following astro-ph/0208035, we adopt electron and non-electron neutrino spectra with very small differences. Conclusions change

    An Integrated Picture of Star Formation, Metallicity Evolution, and Galactic Stellar Mass Assembly

    Full text link
    We present an integrated study of star formation and galactic stellar mass assembly from z=0.05-1.5 and galactic metallicity evolution from z=0.05-0.9 using a very large and highly spectroscopically complete sample selected by rest-frame NIR bolometric flux in the GOODS-N. We assume a Salpeter IMF and fit Bruzual & Charlot (2003) models to compute the galactic stellar masses and extinctions. We determine the expected formed stellar mass density growth rates produced by star formation and compare them with the growth rates measured from the formed stellar mass functions by mass interval. We show that the growth rates match if the IMF is slightly increased from the Salpeter IMF at intermediate masses (~10 solar masses). We investigate the evolution of galaxy color, spectral type, and morphology with mass and redshift and the evolution of mass with environment. We find that applying extinction corrections is critical when analyzing galaxy colors; e.g., nearly all of the galaxies in the green valley are 24um sources, but after correcting for extinction, the bulk of the 24um sources lie in the blue cloud. We find an evolution of the metallicity-mass relation corresponding to a decrease of 0.21+/-0.03 dex between the local value and the value at z=0.77 in the 1e10-1e11 solar mass range. We use the metallicity evolution to estimate the gas mass of the galaxies, which we compare with the galactic stellar mass assembly and star formation histories. Overall, our measurements are consistent with a galaxy evolution process dominated by episodic bursts of star formation and where star formation in the most massive galaxies (>1e11 solar masses) ceases at z<1.5 because of gas starvation. (Abstract abridged)Comment: 48 pages, Accepted by the Astrophysical Journa

    New Constraints on Neutrino Oscillations in Vacuum as a Possible Solution of the Solar Neutrino Problem

    Full text link
    Two-neutrino oscillations in vacuum are studied as a possible solution of the solar neutrino problem. New constraints on the parameter sn2, characterizing the mixing of the electron neutrino with another active or sterile neutrino, as well as on the mass--squared difference, dm2, of their massive neutrino components, are derived using the latest results from the four solar neutrino experiments. Oscillations into a sterile neutrino are ruled out at 99 % C.L. by the observed mean event rates even if one includes the uncertainties of the standard solar model predictions in the analysis.Comment: 10 pages + 3 figures attached as postscript files, IFP-480-UNC and Ref. SISSA 177/93/EP (Updated Version which takes into account the latest GALLEX results from 30 runs

    Progress in the physics of massive neutrinos

    Full text link
    The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of \nu_\mu to \nu_e oscillations and the hierarchy of the neutrino mass spectrum; the detection of CP violation in the neutrino sector depends on these and on an unknown phase. The estimated neutrino parameter sensitivities at future facilities (reactors, superbeams, neutrino factories) are given. The overall agenda of a future neutrino physics program to construct a bottom-up understanding of the lepton sector is presented.Comment: 111 pages, 35 figures. Update

    Signals of R-parity violating supersymmetry in neutrino scattering at muon storage rings

    Get PDF
    Neutrino oscillation signals at muon storage rings can be faked by supersymmetric (SUSY) interactions in an R-parity violating scenario. We investigate the Ï„\tau-appearance signals for both long-baseline and near-site experiments, and conclude that the latter is of great use in distinguishing between oscillation and SUSY effects. On the other hand, SUSY can cause a manifold increase in the event rate for wrong-sign muons at a long-baseline setting, thereby providing us with signatures of new physics.Comment: 7 pages LaTeX, 4 ps figures, accepted for publication in Phys. Rev.

    QCD Corrections to Electroweak Annihilation Decays of Superheavy Quarkonia

    Get PDF
    QCD corrections to all the allowed decays of superheavy groundstate quarkonia into electroweak gauge and Higgs bosons are presented. For quick estimates, approximations that reproduce the exact results within less than at worst two percent are also given.Comment: 20 pages RevTeX, 9 figures. The complete paper, including figures, is also available via anonymous ftp at (129.13.102.139) as ftp://ttpux2.physik.uni-karlsruhe.de/ttp95-05/ttp95-05.ps, or via www at http://ttpux2.physik.uni-karlsruhe.de/cgi-bin/preprints

    High energy neutrinos from neutralino annihilations in the Sun

    Full text link
    Neutralino annihilations in the Sun to weak boson and top quark pairs lead to high-energy neutrinos that can be detected by the IceCube and KM3 experiments in the search for neutralino dark matter. We calculate the neutrino signals from real and virtual WW, ZZ, Zh, and ttˉt \bar t production and decays, accounting for the spin-dependences of the matrix elements, which can have important influences on the neutrino energy spectra. We take into account neutrino propagation including neutrino oscillations, matter-resonance, absorption, and nu_tau regeneration effects in the Sun and evaluate the neutrino flux at the Earth. We concentrate on the compelling Focus Point (FP) region of the supergravity model that reproduces the observed dark matter relic density. For the FP region, the lightest neutralino has a large bino-higgsino mixture that leads to a high neutrino flux and the spin-dependent neutralino capture rate in the Sun is enhanced by 10^3 over the spin-independent rate. For the standard estimate of neutralino captures, the muon signal rates in IceCube are identifiable over the atmospheric neutrino background for neutralino masses above M_Z up to 400 GeV.Comment: 45 pages, 18 figures and 5 tables, PRD versio

    Infrared Quasi Fixed Point Structure in Extended Yukawa Sectors and Application to R-parity Violation

    Get PDF
    We investigate one-loop renormalization group evolutions of extended sectors of Yukawa type couplings. It is shown that Landau Poles which usually provide necessary low energy upper bounds that saturate quickly with increasing initial value conditions, lead in some cases to the opposite behaviour: some of the low energy couplings decrease and become vanishingly small for increasingly large initial conditions. We write down the general criteria for this to happen in typical situations, highlighting a concept of {\sl repulsive} quasi-fixed points, and illustrate the case both within a two-Yukawa toy model as well as in the minimal supersymmetric standard model with R-parity violation. In the latter case we consider the theoretical upper bounds on the various couplings, identifying regimes where λkl3,λkkk′,λ3kl′′\lambda_{kl3}, \lambda'_{kkk}, \lambda''_{3kl} are dynamically suppressed due to the Landau Pole. We stress the importance of considering a large number of couplings simultaneously. This leads altogether to a phenomenologically interesting seesaw effect in the magnitudes of the various R-parity violating couplings, complementing and in some cases improving the existing limits.Comment: Latex, 33 pages, 6 figure

    Infrared quasi-fixed solutions in the NMSSM

    Get PDF
    The considerable part of the parameter space in the MSSM corresponding to the infrared quasi fixed point scenario is almost excluded by LEP II bounds on the lightest Higgs boson mass. In the NMSSM the mass of the lightest Higgs boson reaches its maximum value in the strong Yukawa coupling limit when Yukawa couplings are essentially larger than gauge ones at the Grand Unification scale. In this limit the solutions of the renormalisation group equations are attracted to the infrared and Hill type effective fixed lines or surfaces in the Yukawa coupling parameter space. They are concentrated in the vicinity of quasi fixed points for Yi(0)→∞Y_i(0)\to\infty. However the solutions are attracted to such points rather weakly. For this reason when all Yi(0)∼1Y_i(0)\sim 1 the solutions of the renormalisation group equations are gathered near a line in the Hill type effective surface. In the paper the approximate solutions for the NMSSM Yukawa couplings are given. The possibility of bb--quark and τ\tau--lepton Yukawa coupling unification at the scale MXM_{X} is also discussed.Comment: 32 pages, 8 figures included, LaTeX 2
    • …
    corecore